The Sylow Theorems
Formalized Mathematics (2007)
- Volume: 15, Issue: 3, page 159-165
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topMarco Riccardi. "The Sylow Theorems." Formalized Mathematics 15.3 (2007): 159-165. <http://eudml.org/doc/267368>.
@article{MarcoRiccardi2007,
abstract = {The goal of this article is to formalize the Sylow theorems closely following the book [4]. Accordingly, the article introduces the group operating on a set, the stabilizer, the orbits, the p-groups and the Sylow subgroups.},
author = {Marco Riccardi},
journal = {Formalized Mathematics},
language = {eng},
number = {3},
pages = {159-165},
title = {The Sylow Theorems},
url = {http://eudml.org/doc/267368},
volume = {15},
year = {2007},
}
TY - JOUR
AU - Marco Riccardi
TI - The Sylow Theorems
JO - Formalized Mathematics
PY - 2007
VL - 15
IS - 3
SP - 159
EP - 165
AB - The goal of this article is to formalize the Sylow theorems closely following the book [4]. Accordingly, the article introduces the group operating on a set, the stabilizer, the orbits, the p-groups and the Sylow subgroups.
LA - eng
UR - http://eudml.org/doc/267368
ER -
References
top- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [4] Nicolas Bourbaki. Elements of Mathematics. Algebra I. Chapters 1-3. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1989. Zbl0673.00001
- [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
- [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [10] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
- [11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- [12] Artur Korniłowicz. The definition and basic properties of topological groups. Formalized Mathematics, 7(2):217-225, 1998.
- [13] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
- [14] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
- [15] Karol Pak. Cardinal numbers and finite sets. Formalized Mathematics, 13(3):399-406, 2005.
- [16] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
- [17] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathematics, 2(5):623-627, 1991.
- [18] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
- [21] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
- [22] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955-962, 1990.
- [23] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
- [24] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855-864, 1990.
- [25] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573-578, 1991.
- [26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [28] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.