Some Properties of p -Groups and Commutative p -Groups

Xiquan Liang; Dailu Li

Formalized Mathematics (2011)

  • Volume: 19, Issue: 1, page 11-15
  • ISSN: 1426-2630

Abstract

top
This article describes some properties of p-groups and some properties of commutative p-groups.

How to cite

top

Xiquan Liang, and Dailu Li. " Some Properties of p -Groups and Commutative p -Groups ." Formalized Mathematics 19.1 (2011): 11-15. <http://eudml.org/doc/267430>.

@article{XiquanLiang2011,
abstract = {This article describes some properties of p-groups and some properties of commutative p-groups.},
author = {Xiquan Liang, Dailu Li},
journal = {Formalized Mathematics},
keywords = {finite -groups},
language = {eng},
number = {1},
pages = {11-15},
title = { Some Properties of p -Groups and Commutative p -Groups },
url = {http://eudml.org/doc/267430},
volume = {19},
year = {2011},
}

TY - JOUR
AU - Xiquan Liang
AU - Dailu Li
TI - Some Properties of p -Groups and Commutative p -Groups
JO - Formalized Mathematics
PY - 2011
VL - 19
IS - 1
SP - 11
EP - 15
AB - This article describes some properties of p-groups and some properties of commutative p-groups.
LA - eng
KW - finite -groups
UR - http://eudml.org/doc/267430
ER -

References

top
  1. [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  2. [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  3. [3] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990. 
  4. [4] Marco Riccardi. The Sylow theorems. Formalized Mathematics, 15(3):159-165, 2007, doi:10.2478/v10037-007-0018-3.[Crossref] 
  5. [5] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathematics, 2(5):623-627, 1991. 
  6. [6] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955-962, 1990. 
  7. [7] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990. 
  8. [8] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855-864, 1990. 
  9. [9] Wojciech A. Trybulec. Commutator and center of a group. Formalized Mathematics, 2(4):461-466, 1991. 
  10. [10] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991. 
  11. [11] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573-578, 1991. 
  12. [12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.