# Set of Points on Elliptic Curve in Projective Coordinates

Yuichi Futa; Hiroyuki Okazaki; Yasunari Shidama

Formalized Mathematics (2011)

- Volume: 19, Issue: 3, page 131-138
- ISSN: 1426-2630

## Access Full Article

top## Abstract

top## How to cite

topYuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. "Set of Points on Elliptic Curve in Projective Coordinates." Formalized Mathematics 19.3 (2011): 131-138. <http://eudml.org/doc/267455>.

@article{YuichiFuta2011,

abstract = {In this article, we formalize a set of points on an elliptic curve over GF(p). Elliptic curve cryptography [10], whose security is based on a difficulty of discrete logarithm problem of elliptic curves, is important for information security.},

author = {Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama},

journal = {Formalized Mathematics},

language = {eng},

number = {3},

pages = {131-138},

title = {Set of Points on Elliptic Curve in Projective Coordinates},

url = {http://eudml.org/doc/267455},

volume = {19},

year = {2011},

}

TY - JOUR

AU - Yuichi Futa

AU - Hiroyuki Okazaki

AU - Yasunari Shidama

TI - Set of Points on Elliptic Curve in Projective Coordinates

JO - Formalized Mathematics

PY - 2011

VL - 19

IS - 3

SP - 131

EP - 138

AB - In this article, we formalize a set of points on an elliptic curve over GF(p). Elliptic curve cryptography [10], whose security is based on a difficulty of discrete logarithm problem of elliptic curves, is important for information security.

LA - eng

UR - http://eudml.org/doc/267455

ER -

## References

top- Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- G. Seroussi I. Blake and N. Smart. Elliptic Curves in Cryptography. Number 265 in London Mathematical Society Lecture Note Series. Cambridge University Press, 1999.
- Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
- Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
- Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
- Christoph Schwarzweller. The ring of integers, euclidean rings and modulo integers. Formalized Mathematics, 8(1):29-34, 1999.
- Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559-564, 2001.
- Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
- Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
- Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
- Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
- Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.