Gaussian Integers

Yuichi Futa; Hiroyuki Okazaki; Daichi Mizushima; Yasunari Shidama

Formalized Mathematics (2013)

  • Volume: 21, Issue: 2, page 115-125
  • ISSN: 1426-2630

Abstract

top
Gaussian integer is one of basic algebraic integers. In this article we formalize some definitions about Gaussian integers [27]. We also formalize ring (called Gaussian integer ring), Z-module and Z-algebra generated by Gaussian integer mentioned above. Moreover, we formalize some definitions about Gaussian rational numbers and Gaussian rational number field. Then we prove that the Gaussian rational number field and a quotient field of the Gaussian integer ring are isomorphic.

How to cite

top

Yuichi Futa, et al. "Gaussian Integers." Formalized Mathematics 21.2 (2013): 115-125. <http://eudml.org/doc/266545>.

@article{YuichiFuta2013,
abstract = {Gaussian integer is one of basic algebraic integers. In this article we formalize some definitions about Gaussian integers [27]. We also formalize ring (called Gaussian integer ring), Z-module and Z-algebra generated by Gaussian integer mentioned above. Moreover, we formalize some definitions about Gaussian rational numbers and Gaussian rational number field. Then we prove that the Gaussian rational number field and a quotient field of the Gaussian integer ring are isomorphic.},
author = {Yuichi Futa, Hiroyuki Okazaki, Daichi Mizushima, Yasunari Shidama},
journal = {Formalized Mathematics},
keywords = {formalization of Gaussian integers; algebraic integers},
language = {eng},
number = {2},
pages = {115-125},
title = {Gaussian Integers},
url = {http://eudml.org/doc/266545},
volume = {21},
year = {2013},
}

TY - JOUR
AU - Yuichi Futa
AU - Hiroyuki Okazaki
AU - Daichi Mizushima
AU - Yasunari Shidama
TI - Gaussian Integers
JO - Formalized Mathematics
PY - 2013
VL - 21
IS - 2
SP - 115
EP - 125
AB - Gaussian integer is one of basic algebraic integers. In this article we formalize some definitions about Gaussian integers [27]. We also formalize ring (called Gaussian integer ring), Z-module and Z-algebra generated by Gaussian integer mentioned above. Moreover, we formalize some definitions about Gaussian rational numbers and Gaussian rational number field. Then we prove that the Gaussian rational number field and a quotient field of the Gaussian integer ring are isomorphic.
LA - eng
KW - formalization of Gaussian integers; algebraic integers
UR - http://eudml.org/doc/266545
ER -

References

top
  1. [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990. 
  2. [2] Grzegorz Bancerek. Konig’s theorem. Formalized Mathematics, 1(3):589-593, 1990. 
  3. [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  4. [4] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990. 
  5. [5] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990. 
  6. [6] Czesław Bylinski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990. 
  7. [7] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990. 
  8. [8] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  9. [9] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  10. [10] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  11. [11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990. 
  12. [12] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Set of points on elliptic curve in projective coordinates. Formalized Mathematics, 19(3):131-138, 2011. doi:10.2478/v10037-011-0021-6.[Crossref] Zbl1276.11090
  13. [13] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Z-modules. Formalized Mathematics, 20(1):47-59, 2012. doi:10.2478/v10037-012-0007-z.[Crossref] Zbl1276.94012
  14. [14] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841-845, 1990. 
  15. [15] Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990. 
  16. [16] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829-832, 1990. 
  17. [17] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991. 
  18. [18] Christoph Schwarzweller. The correctness of the generic algorithms of Brown and Henrici concerning addition and multiplication in fraction fields. Formalized Mathematics, 6(3): 381-388, 1997. 
  19. [19] Christoph Schwarzweller. The ring of integers, Euclidean rings and modulo integers. Formalized Mathematics, 8(1):29-34, 1999. 
  20. [20] Christoph Schwarzweller. The field of quotients over an integral domain. Formalized Mathematics, 7(1):69-79, 1998. 
  21. [21] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003. 
  22. [22] Andrzej Trybulec and Czesław Bylinski. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990. 
  23. [23] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990. 
  24. [24] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990. 
  25. [25] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. 
  26. [26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  27. [27] Andr´e Weil. Number Theory for Beginners. Springer-Verlag, 1979. 
  28. [28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.