Immanant Conversion on Symmetric Matrices

M. Purificação Coelho; M. Antónia Duffner; Alexander E. Guterman

Special Matrices (2014)

  • Volume: 2, Issue: 1, page 1-10, electronic only
  • ISSN: 2300-7451

Abstract

top
Letr Σn(C) denote the space of all n χ n symmetric matrices over the complex field C. The main objective of this paper is to prove that the maps Φ : Σn(C) -> Σn (C) satisfying for any fixed irre- ducible characters X, X' -SC the condition dx(A +aB) = dχ·(Φ(Α ) + αΦ(Β)) for all matrices A,В ε Σ„(С) and all scalars a ε C are automatically linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on ΣИ(С).

How to cite

top

M. Purificação Coelho, M. Antónia Duffner, and Alexander E. Guterman. "Immanant Conversion on Symmetric Matrices." Special Matrices 2.1 (2014): 1-10, electronic only. <http://eudml.org/doc/267527>.

@article{M2014,
abstract = {Letr Σn(C) denote the space of all n χ n symmetric matrices over the complex field C. The main objective of this paper is to prove that the maps Φ : Σn(C) -> Σn (C) satisfying for any fixed irre- ducible characters X, X' -SC the condition dx(A +aB) = dχ·(Φ(Α ) + αΦ(Β)) for all matrices A,В ε Σ„(С) and all scalars a ε C are automatically linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on ΣИ(С).},
author = {M. Purificação Coelho, M. Antónia Duffner, Alexander E. Guterman},
journal = {Special Matrices},
keywords = {Determinant; permanent; immanant; preservers; converters; symmetric matrices; determinant},
language = {eng},
number = {1},
pages = {1-10, electronic only},
title = {Immanant Conversion on Symmetric Matrices},
url = {http://eudml.org/doc/267527},
volume = {2},
year = {2014},
}

TY - JOUR
AU - M. Purificação Coelho
AU - M. Antónia Duffner
AU - Alexander E. Guterman
TI - Immanant Conversion on Symmetric Matrices
JO - Special Matrices
PY - 2014
VL - 2
IS - 1
SP - 1
EP - 10, electronic only
AB - Letr Σn(C) denote the space of all n χ n symmetric matrices over the complex field C. The main objective of this paper is to prove that the maps Φ : Σn(C) -> Σn (C) satisfying for any fixed irre- ducible characters X, X' -SC the condition dx(A +aB) = dχ·(Φ(Α ) + αΦ(Β)) for all matrices A,В ε Σ„(С) and all scalars a ε C are automatically linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on ΣИ(С).
LA - eng
KW - Determinant; permanent; immanant; preservers; converters; symmetric matrices; determinant
UR - http://eudml.org/doc/267527
ER -

References

top
  1. [1] C. Cao, X. Tang: Determinant preserving transformations on symmetric matrix spaces, Electronic Journal of Linear Algebra 11 (2004) 205-211. Zbl1069.15004
  2. [2] M. P. Coelho: Linear preservers of the permanent on symmetric matrices, Linear and Multilinear Algebra 41 (1996) 1-8. 
  3. [3] M. P. Coelho, M. A. Dufner: Immanant preserving and immanant converting maps, Linear Algebra Appl. 418(2006) 177-187. Zbl1107.15002
  4. [4] M. P. Coelho, M. A. Dufner: Linear preservers of immanants on symmetric matrices, Linear Algebra Appl. 255 (1997) 314-334. Zbl0944.15004
  5. [5] M. P. Coelho, M. A. Dufner: On the conversion of an immanant into another on symmetric matrices, Linear and Multilinear Algebra, 51:2 (2003), 137-145. 
  6. [6] G. Dolinar and P. Semrl: Determinant preserving maps on matrix algebras, Linear Algebra and its Application 348 (2002) 189-192. 
  7. [7] G. Frobenius,¨Uber die Darstellung der endlichen Gruppen durch lineare Substitutionen. Sitzungsber. Preuss. Akad. Wiss. Berlin (1897), 994-1015. Zbl28.0130.01
  8. [8] G.D. James, A. Kerber: The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications 16, Cambridge University Press, 1981. 
  9. [9] B. Kuzma: A note on immanant preservers, Fundamental and Applied Mathematics, 13, 4, (2007) 113-120, translated in Journal of Mathematical Sciences (New York) 155:6 (2008), 872-876. 
  10. [10] M. H. Lim: Linear transformations on symmetric matrices, Linear and Multilinear Algebra 7 (1979) 47-57. Zbl0498.15008
  11. [11] D.E. Littlewood: The theory of group characters, Oxford University Press, 1958 
  12. [12] V. Tan and F. Wang: On determinant preserver problems, Linear Algebra and its Application 369 (2003) 311-317. Zbl1032.15004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.