A Note on the Permanental Roots of Bipartite Graphs
Heping Zhang; Shunyi Liu; Wei Li
Discussiones Mathematicae Graph Theory (2014)
- Volume: 34, Issue: 1, page 49-56
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topHeping Zhang, Shunyi Liu, and Wei Li. "A Note on the Permanental Roots of Bipartite Graphs." Discussiones Mathematicae Graph Theory 34.1 (2014): 49-56. <http://eudml.org/doc/267601>.
@article{HepingZhang2014,
abstract = {It is well-known that any graph has all real eigenvalues and a graph is bipartite if and only if its spectrum is symmetric with respect to the origin. We are interested in finding whether the permanental roots of a bipartite graph G have symmetric property as the spectrum of G. In this note, we show that the permanental roots of bipartite graphs are symmetric with respect to the real and imaginary axes. Furthermore, we prove that any graph has no negative real permanental root, and any graph containing at least one edge has complex permanental roots.},
author = {Heping Zhang, Shunyi Liu, Wei Li},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {permanent; permanental polynomial; permanental roots},
language = {eng},
number = {1},
pages = {49-56},
title = {A Note on the Permanental Roots of Bipartite Graphs},
url = {http://eudml.org/doc/267601},
volume = {34},
year = {2014},
}
TY - JOUR
AU - Heping Zhang
AU - Shunyi Liu
AU - Wei Li
TI - A Note on the Permanental Roots of Bipartite Graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2014
VL - 34
IS - 1
SP - 49
EP - 56
AB - It is well-known that any graph has all real eigenvalues and a graph is bipartite if and only if its spectrum is symmetric with respect to the origin. We are interested in finding whether the permanental roots of a bipartite graph G have symmetric property as the spectrum of G. In this note, we show that the permanental roots of bipartite graphs are symmetric with respect to the real and imaginary axes. Furthermore, we prove that any graph has no negative real permanental root, and any graph containing at least one edge has complex permanental roots.
LA - eng
KW - permanent; permanental polynomial; permanental roots
UR - http://eudml.org/doc/267601
ER -
References
top- [1] B. Anderson, J. Jackson and M. Sitharam, Descartes’ rule of signs revisited, Amer. Math. Monthly 105 (1998) 447-451. doi:10.2307/3109807[Crossref] Zbl0913.12001
- [2] F. Belardo, V.D. Filippis and S.K. Simić, Computing the permanental polynomial of matrix from a combinatorial viewpoint , MATCH Commun. Math. Comput. Chem. 66 (2011) 381-396. Zbl1289.05268
- [3] G.D. Birkhoff and D.C. Lewis, Chromatic polynomials, Trans. Amer. Math. Soc. 60 (1946) 355-451. doi:10.2307/1990348[Crossref]
- [4] M. Borowiecki, On spectrum and per-spectrum of graphs, Publ. Inst. Math. (Beograd) 38 (1985) 31-33. Zbl0581.05036
- [5] M. Borowiecki and T. Jóźwiak, A note on characteristic and permanental polynomials of multigraphs, in: Graph Theory, Borowiecki, Kennedy and Syslo (Ed(s)), (Berlin, Springer-Verlag, 1983) 75-78. Zbl0525.05046
- [6] M. Borowiecki and T. Jóźwiak, Computing the permanental polynomial of a multigraph, Discuss. Math. V (1982) 9-16. Zbl0514.05044
- [7] G.G. Cash, The permanental polynomial , J. Chem. Inf. Comput. Sci. 40 (2000) 1203-1206. doi:10.1021/ci000031d[Crossref]
- [8] G.G. Cash, Permanental polynomials of smaller fullerenes, J. Chem. Inf. Comput. Sci. 40 (2000) 1207-1209. doi:10.1021/ci0000326[Crossref]
- [9] R. Chen, A note on the relations between the permanental and characteristic polynomials of coronoid hydrocarbons, MATCH Commun. Math. Comput. Chem. 51 (2004) 137-148. Zbl1051.05058
- [10] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs: Third Edition (Johann Ambrosius Barth Verlag, Heidelberg-Leipzig, 1995). Zbl0824.05046
- [11] E.J. Farrell, An introduction to matching polynomials, J. Combin. Theory (B) 27 (1979) 75-86. doi:10.1016/0095-8956(79)90070-4[Crossref]
- [12] I. Gutman and G.G. Cash, Relations between the permanental and characteristic polynomials of fullerenes and benzenoid hydrocarbons, MATCH Commun. Math. Comput. Chem. 45 (2002) 55-70. Zbl1026.05081
- [13] D. Kasum, N. Trinajstić and I. Gutman, Chemical graph theory. III. On permanental polynomial , Croat. Chem. Acta 54 (1981) 321-328.
- [14] L. Lovász and M.D. Plummer, Matching Theory, Annals of Discrete Mathematics, Vol. 29 (North-Holland, New York, 1986).
- [15] R. Merris, K.R. Rebman and W. Watkins, Permanental polynomials of graphs, Linear Algebra Appl. 38 (1981) 273-288. doi:10.1016/0024-3795(81)90026-4[Crossref][WoS] Zbl0474.05049
- [16] J. Turner, Generalized matrix functions and the graph isomorphism problem, SIAM J. Appl. Math. 16 (1968) 520-526. doi:10.1137/0116041[Crossref] Zbl0185.51701
- [17] L.G. Valiant, The complexity of computing the permanent , Theoret. Comput. Sci. 8 (1979) 189-201. doi:10.1016/0304-3975(79)90044-6[Crossref]
- [18] W. Yan and F. Zhang, On the permanental polynomials of some graphs, J. Math. Chem. 35 (2004) 175-188. doi:10.1023/B:JOMC.0000033254.54822.f8[Crossref] Zbl1048.05062
- [19] H. Zhang and W. Li, Computing the permanental polynomials of bipartite graphs by Pfaffian orientation, Discrete Appl. Math. 160 (2012) 2069-2074. doi:10.1016/j.dam.2012.04.007 [Crossref][WoS] Zbl1246.05100
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.