A decomposition of gallai multigraphs
Alexander Halperin; Colton Magnant; Kyle Pula
Discussiones Mathematicae Graph Theory (2014)
- Volume: 34, Issue: 2, page 331-352
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topAlexander Halperin, Colton Magnant, and Kyle Pula. "A decomposition of gallai multigraphs." Discussiones Mathematicae Graph Theory 34.2 (2014): 331-352. <http://eudml.org/doc/267744>.
@article{AlexanderHalperin2014,
abstract = {An edge-colored cycle is rainbow if its edges are colored with distinct colors. A Gallai (multi)graph is a simple, complete, edge-colored (multi)graph lacking rainbow triangles. As has been previously shown for Gallai graphs, we show that Gallai multigraphs admit a simple iterative construction. We then use this structure to prove Ramsey-type results within Gallai colorings. Moreover, we show that Gallai multigraphs give rise to a surprising and highly structured decomposition into directed trees},
author = {Alexander Halperin, Colton Magnant, Kyle Pula},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {edge coloring; Gallai multigraph},
language = {eng},
number = {2},
pages = {331-352},
title = {A decomposition of gallai multigraphs},
url = {http://eudml.org/doc/267744},
volume = {34},
year = {2014},
}
TY - JOUR
AU - Alexander Halperin
AU - Colton Magnant
AU - Kyle Pula
TI - A decomposition of gallai multigraphs
JO - Discussiones Mathematicae Graph Theory
PY - 2014
VL - 34
IS - 2
SP - 331
EP - 352
AB - An edge-colored cycle is rainbow if its edges are colored with distinct colors. A Gallai (multi)graph is a simple, complete, edge-colored (multi)graph lacking rainbow triangles. As has been previously shown for Gallai graphs, we show that Gallai multigraphs admit a simple iterative construction. We then use this structure to prove Ramsey-type results within Gallai colorings. Moreover, we show that Gallai multigraphs give rise to a surprising and highly structured decomposition into directed trees
LA - eng
KW - edge coloring; Gallai multigraph
UR - http://eudml.org/doc/267744
ER -
References
top- [1] B. Alexeev, On lengths of rainbow cycles, Electron. J. Combin. 13(1) (2006) #105
- [2] R.N. Ball, A. Pultr and P. Vojtěchovský, Colored graphs without colorful cycles, Combinatorica 27 (2007) 407-427. doi:10.1007/s00493-007-2224-6[WoS][Crossref] Zbl1174.05041
- [3] A. Diwan and D. Mubayi, Turán’s theorem with colors, preprint, 2007.
- [4] R.J. Faudree, R. Gould, M. Jacobson and C. Magnant, Ramsey numbers in rainbow triangle free colorings, Australas. J. Combin. 46 (2010) 269-284. Zbl1196.05052
- [5] A. Frieze and M. Krivelevich, On rainbow trees and cycles, Electron. J. Combin. 15 (2008) #59. Zbl1159.05019
- [6] S. Fujita and C. Magnant, Extensions of Gallai-Ramsey results, J. Graph Theory 70 (2012) 404-426. doi:10.1002/jgt.20622[Crossref] Zbl1247.05149
- [7] S. Fujita and C. Magnant, Gallai-Ramsey numbers for cycles, Discrete Math. 311 (2011) 1247-1254. doi:10.1016/j.disc.2009.11.004[Crossref]
- [8] S. Fujita, C. Magnant and K. Ozeki, Rainbow generalizations of Ramsey theory: a survey, Graphs Combin. 26 (2010) 1-30. doi:10.1007/s00373-010-0891-3[Crossref][WoS] Zbl1231.05178
- [9] S. Fujita, C. Magnant and K. Ozeki. Rainbow generalizations of Ramsey theory: a survey, (2011) updated. http://math.georgiasouthern.edu/∼cmagnant Zbl1231.05178
- [10] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar. 18 (1967) 25-66. doi:10.1007/BF02020961[Crossref]
- [11] A. Gyárfás, G. Sárközy, A. Sebö and S. Selkow, Ramsey-type results for Gallai colorings, J. Graph Theory 64 (2010) 233-243.[WoS] Zbl1209.05082
- [12] A. Gyárfás and G. Simonyi, Edge colorings of complete graphs without tricolored triangles, J. Graph Theory 46 (2004) 211-216. doi:10.1002/jgt.20001[Crossref] Zbl1041.05028
- [13] P. Vojtěchovský, Periods in missing lengths of rainbow cycles, J. Graph Theory 61 (2009) 98-110. doi:10.1002/jgt.20371 [Crossref][WoS] Zbl1191.05047
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.