Generalization of some extremal problems on non-overlapping domains with free poles

Iryna V. Denega

Annales UMCS, Mathematica (2013)

  • Volume: 67, Issue: 1, page 11-22
  • ISSN: 2083-7402

Abstract

top
Some results related to extremal problems with free poles on radial systems are generalized. They are obtained by applying the known methods of geometric function theory of complex variable. Sufficiently good numerical results for γ are obtained.

How to cite

top

Iryna V. Denega. "Generalization of some extremal problems on non-overlapping domains with free poles." Annales UMCS, Mathematica 67.1 (2013): 11-22. <http://eudml.org/doc/267910>.

@article{IrynaV2013,
abstract = {Some results related to extremal problems with free poles on radial systems are generalized. They are obtained by applying the known methods of geometric function theory of complex variable. Sufficiently good numerical results for γ are obtained.},
author = {Iryna V. Denega},
journal = {Annales UMCS, Mathematica},
keywords = {Extremal problems on non-overlapping domains; inner radius; n-radial system of points; separating transformation; extremal problems on non-overlapping domains; -radial system of points},
language = {eng},
number = {1},
pages = {11-22},
title = {Generalization of some extremal problems on non-overlapping domains with free poles},
url = {http://eudml.org/doc/267910},
volume = {67},
year = {2013},
}

TY - JOUR
AU - Iryna V. Denega
TI - Generalization of some extremal problems on non-overlapping domains with free poles
JO - Annales UMCS, Mathematica
PY - 2013
VL - 67
IS - 1
SP - 11
EP - 22
AB - Some results related to extremal problems with free poles on radial systems are generalized. They are obtained by applying the known methods of geometric function theory of complex variable. Sufficiently good numerical results for γ are obtained.
LA - eng
KW - Extremal problems on non-overlapping domains; inner radius; n-radial system of points; separating transformation; extremal problems on non-overlapping domains; -radial system of points
UR - http://eudml.org/doc/267910
ER -

References

top
  1. [1] Bieberbach, L., ¨ Uber die Koeffizienten derjenigen Potenzreihen, welche eine schlichteAbbildung des Einheitskreises vermitteln, Sitzungsber. Preuss. Akad. Wiss. Phys- Math. Kl. 138 (1916), 940-955. 
  2. [2] Bakhtin, A. K., Bakhtina, G. P., Separating transformation and problem on nonoverlappingdomains, Proceedings of Institute of Mathematics of NAS of Ukraine 3 (4) (2006), 273-281. Zbl1199.30145
  3. [3] Bakhtin, A. K., Bakhtina, G. P., Zelinskii, Yu. B., Topological-algebraic structures andgeometric methods in complex analysis, Proceedings of the Institute of Mathematics of NAS of Ukraine 73 (2008), 308 pp. (Russian). Zbl1199.30001
  4. [4] Dubinin, V. N., The symmetrization method in problems on non-overlapping domains, Mat. Sb. (N.S.) 128 (1) (1985), 110-123 (Russian). Zbl0588.30024
  5. [5] Dubinin, V. N., A separating transformation of domains and problems on extremaldecomposition, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 168 (1988), 48-66 (Russian); translation in J. Soviet Math. 53, no. 3 (1991), 252-263. 
  6. [6] Dubinin, V. N., Symmetrization method in geometric function theory of complexvariables, Uspekhi Mat. Nauk 49, no. 1 (1994), 3-76 (Russian); translation in Russian Math. Surveys 49, no. 1 (1994), 1-79. 
  7. [7] Dubinin, V. N., Asymptotics of the modulus of a degenerate condenser, and some ofits applications, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 237 (1997), 56-73 (Russian); translation in J. Math. Sci. (New York) 95, no. 3 (1999), 2209-2220. 
  8. [8] Dubinin, V. N., Capacities of condensers and symmetrization in geometric functiontheory of complex variables, Dal’nayka, Vladivostok, 2009 (Russian). 
  9. [9] Duren, P. L., Univalent Functions, Springer-Verlag, New York, 1983. 
  10. [10] Goluzin, G. M., Geometric Theory of Functions of a Complex Variable, Translations of Mathematical Monographs, no. 26, Amer. Math. Soc., Providence, R.I. (1969). Zbl0183.07502
  11. [11] Gr¨otzsch, H., ¨ Uber einige Extremalprobleme der konformen Abbildung. I, II, Ber. Verh. S¨achs. Akad. Wiss. Leipzig, Math.-Phys. 80 (6) (1928), 367-376, 497-502. 
  12. [12] Grunsky, H., Koeffizientenbedingungen f¨ur schlicht abbildende meromorphe Funltionen, Math. Z. 45, no. 1 (1939), 29-61. Zbl0022.15103
  13. [13] Hayman, W. K., Multivalent Functions, Cambridge University Press, Cambridge, 1958. 
  14. [14] Jenkins, J. A., Some uniqueness results in the theory of symmetrization, Ann. Math. 61, no. 1 (1955), 106-115. Zbl0064.07501
  15. [15] Kolbina, L. I., Conformal mapping of the unit circle onto non-overlapping domains, Vestnik Leningrad. Univ. 10, no. 5 (1955), 37-43 (Russian). 
  16. [16] Kovalev, L. V., On the problem of extremal decomposition with free poles on the circle, Dal’nevost. Mat. Sb. 2 (1996), 96-98 (Russian). Zbl0902.30018
  17. [17] Lavrent’ev, M. A., On the theory of conformal mappings, Tr. Fiz.-Mat. Inst. Akad. Nauk SSSR, Otdel. Mat. 5 (1934), 195-245 (Russian). 
  18. [18] Nehari, Z., Some inequalities in the theory of functions Trans. Amer. Math. Soc. 75, no. 2 (1953), 256-286. Zbl0051.31204
  19. [19] Riemann, B., Theorie der Abelschen Functionen J. Reine Angew. Math. 54 (1867), 101-155. 
  20. [20] Teichm¨uller, O., Collected Papers, Springer, Berlin, 1982. 
  21. [21] Vasil’ev, A., Moduli of Families of Curves for Conformal and Quasiconformal Mappings, Springer-Verlag, Berlin, 2002. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.