Weak Completeness Theorem for Propositional Linear Time Temporal Logic

Mariusz Giero

Formalized Mathematics (2012)

  • Volume: 20, Issue: 3, page 227-234
  • ISSN: 1426-2630

Abstract

top
We prove weak (finite set of premises) completeness theorem for extended propositional linear time temporal logic with irreflexive version of until-operator. We base it on the proof of completeness for basic propositional linear time temporal logic given in [20] which roughly follows the idea of the Henkin-Hasenjaeger method for classical logic. We show that a temporal model exists for every formula which negation is not derivable (Satisfiability Theorem). The contrapositive of that theorem leads to derivability of every valid formula. We build a tree of consistent and complete PNPs which is used to construct the model.

How to cite

top

Mariusz Giero. "Weak Completeness Theorem for Propositional Linear Time Temporal Logic." Formalized Mathematics 20.3 (2012): 227-234. <http://eudml.org/doc/268035>.

@article{MariuszGiero2012,
abstract = {We prove weak (finite set of premises) completeness theorem for extended propositional linear time temporal logic with irreflexive version of until-operator. We base it on the proof of completeness for basic propositional linear time temporal logic given in [20] which roughly follows the idea of the Henkin-Hasenjaeger method for classical logic. We show that a temporal model exists for every formula which negation is not derivable (Satisfiability Theorem). The contrapositive of that theorem leads to derivability of every valid formula. We build a tree of consistent and complete PNPs which is used to construct the model.},
author = {Mariusz Giero},
journal = {Formalized Mathematics},
keywords = {weak completeness theorem; completeness theorem; temporal logic; temporal model; satisfiability theorem},
language = {eng},
number = {3},
pages = {227-234},
title = {Weak Completeness Theorem for Propositional Linear Time Temporal Logic},
url = {http://eudml.org/doc/268035},
volume = {20},
year = {2012},
}

TY - JOUR
AU - Mariusz Giero
TI - Weak Completeness Theorem for Propositional Linear Time Temporal Logic
JO - Formalized Mathematics
PY - 2012
VL - 20
IS - 3
SP - 227
EP - 234
AB - We prove weak (finite set of premises) completeness theorem for extended propositional linear time temporal logic with irreflexive version of until-operator. We base it on the proof of completeness for basic propositional linear time temporal logic given in [20] which roughly follows the idea of the Henkin-Hasenjaeger method for classical logic. We show that a temporal model exists for every formula which negation is not derivable (Satisfiability Theorem). The contrapositive of that theorem leads to derivability of every valid formula. We build a tree of consistent and complete PNPs which is used to construct the model.
LA - eng
KW - weak completeness theorem; completeness theorem; temporal logic; temporal model; satisfiability theorem
UR - http://eudml.org/doc/268035
ER -

References

top
  1. [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990. 
  2. [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  3. [3] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990. 
  4. [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  5. [5] Grzegorz Bancerek. K¨onig’s lemma. Formalized Mathematics, 2(3):397-402, 1991. 
  6. [6] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82, 1993. 
  7. [7] Grzegorz Bancerek. Subtrees. Formalized Mathematics, 5(2):185-190, 1996. 
  8. [8] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  9. [9] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990. 
  10. [10] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. FormalizedMathematics, 1(3):529-536, 1990. 
  11. [11] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  12. [12] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  13. [13] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  14. [14] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  15. [15] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990. 
  16. [16] Mariusz Giero. The axiomatization of propositional linear time temporal logic. FormalizedMathematics, 19(2):113-119, 2011, doi: 10.2478/v10037-011-0018-1.[Crossref] Zbl1276.03018
  17. [17] Mariusz Giero. The derivations of temporal logic formulas. Formalized Mathematics, 20(3):215-219, 2012, doi: 10.2478/v10037-012-0025-x.[Crossref] Zbl1285.03009
  18. [18] Mariusz Giero. The properties of sets of temporal logic subformulas. Formalized Mathematics, 20(3):221-226, 2012, doi: 10.2478/v10037-012-0026-9.[Crossref] Zbl1285.03010
  19. [19] Adam Grabowski. Hilbert positive propositional calculus. Formalized Mathematics, 8(1):69-72, 1999. 
  20. [20] Fred Kr¨oger and Stephan Merz. Temporal Logic and State Systems. Springer-Verlag, 2008. Zbl1169.03001
  21. [21] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990. 
  22. [22] Karol Pak. Continuity of barycentric coordinates in Euclidean topological spaces. FormalizedMathematics, 19(3):139-144, 2011, doi: 10.2478/v10037-011-0022-5.[Crossref] Zbl1276.57020
  23. [23] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990. 
  24. [24] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990. 
  25. [25] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990. 
  26. [26] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990. 
  27. [27] Andrzej Trybulec. Defining by structural induction in the positive propositional language. Formalized Mathematics, 8(1):133-137, 1999. 
  28. [28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  29. [29] Edmund Woronowicz. Many argument relations. Formalized Mathematics, 1(4):733-737, 1990. 
  30. [30] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  31. [31] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.