The Derivations of Temporal Logic Formulas
Formalized Mathematics (2012)
- Volume: 20, Issue: 3, page 215-219
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topMariusz Giero. "The Derivations of Temporal Logic Formulas." Formalized Mathematics 20.3 (2012): 215-219. <http://eudml.org/doc/268196>.
@article{MariuszGiero2012,
abstract = {This is a preliminary article to prove the completeness theorem of an extension of basic propositional temporal logic. We base it on the proof of completeness for basic propositional temporal logic given in [12]. We introduce n-ary connectives and prove their properties. We derive temporal logic formulas.},
author = {Mariusz Giero},
journal = {Formalized Mathematics},
keywords = {temporal logic formulas; $n$-ary connectives; completeness theorem},
language = {eng},
number = {3},
pages = {215-219},
title = {The Derivations of Temporal Logic Formulas},
url = {http://eudml.org/doc/268196},
volume = {20},
year = {2012},
}
TY - JOUR
AU - Mariusz Giero
TI - The Derivations of Temporal Logic Formulas
JO - Formalized Mathematics
PY - 2012
VL - 20
IS - 3
SP - 215
EP - 219
AB - This is a preliminary article to prove the completeness theorem of an extension of basic propositional temporal logic. We base it on the proof of completeness for basic propositional temporal logic given in [12]. We introduce n-ary connectives and prove their properties. We derive temporal logic formulas.
LA - eng
KW - temporal logic formulas; $n$-ary connectives; completeness theorem
UR - http://eudml.org/doc/268196
ER -
References
top- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [5] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. FormalizedMathematics, 1(3):529-536, 1990.
- [6] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [7] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [8] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [9] Mariusz Giero. The axiomatization of propositional linear time temporal logic. FormalizedMathematics, 19(2):113-119, 2011, doi: 10.2478/v10037-011-0018-1.[Crossref] Zbl1276.03018
- [10] Adam Grabowski. Hilbert positive propositional calculus. Formalized Mathematics, 8(1):69-72, 1999.
- [11] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
- [12] Fred Kr¨oger and Stephan Merz. Temporal Logic and State Systems. Springer-Verlag, 2008. Zbl1169.03001
- [13] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
- [14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [15] Edmund Woronowicz. Many argument relations. Formalized Mathematics, 1(4):733-737, 1990.
- [16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [17] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.