On boundary behavior of Cauchy integrals

Hiroshige Shiga

Annales UMCS, Mathematica (2013)

  • Volume: 67, Issue: 1, page 65-82
  • ISSN: 2083-7402

Abstract

top
In this paper, we shall estimate the growth order of the n-th derivative Cauchy integrals at a point in terms of the distance between the point and the boundary of the domain. By using the estimate, we shall generalize Plemelj-Sokthoski theorem. We also consider the boundary behavior of generalized Cauchy integrals on compact bordered Riemann surfaces.

How to cite

top

Hiroshige Shiga. "On boundary behavior of Cauchy integrals." Annales UMCS, Mathematica 67.1 (2013): 65-82. <http://eudml.org/doc/268084>.

@article{HiroshigeShiga2013,
abstract = {In this paper, we shall estimate the growth order of the n-th derivative Cauchy integrals at a point in terms of the distance between the point and the boundary of the domain. By using the estimate, we shall generalize Plemelj-Sokthoski theorem. We also consider the boundary behavior of generalized Cauchy integrals on compact bordered Riemann surfaces.},
author = {Hiroshige Shiga},
journal = {Annales UMCS, Mathematica},
keywords = {Cauchy integral; Plemelj-Sokthoski theorem; Riemann surface; Plemelj-Sokhotski theorem},
language = {eng},
number = {1},
pages = {65-82},
title = {On boundary behavior of Cauchy integrals},
url = {http://eudml.org/doc/268084},
volume = {67},
year = {2013},
}

TY - JOUR
AU - Hiroshige Shiga
TI - On boundary behavior of Cauchy integrals
JO - Annales UMCS, Mathematica
PY - 2013
VL - 67
IS - 1
SP - 65
EP - 82
AB - In this paper, we shall estimate the growth order of the n-th derivative Cauchy integrals at a point in terms of the distance between the point and the boundary of the domain. By using the estimate, we shall generalize Plemelj-Sokthoski theorem. We also consider the boundary behavior of generalized Cauchy integrals on compact bordered Riemann surfaces.
LA - eng
KW - Cauchy integral; Plemelj-Sokthoski theorem; Riemann surface; Plemelj-Sokhotski theorem
UR - http://eudml.org/doc/268084
ER -

References

top
  1. [1] Aikawa, H., Modulus of continuity of the Dirichlet solutions, Bull. London Math. Soc. 42 (2010), 857-867.[WoS] Zbl1203.31008
  2. [2] Bikˇcantaev, I. A., Analogues of a Cauchy kernel on a Riemann surface and someapplications of them, Mat. Sb. (N.S.) 112 (154), no. 2 (6) (1980), 256-282 (Russian); translation in Math. USSR Sb. 40, no. 2 (1981), 241-265. 
  3. [3] Block, I. E., The Plemelj theory for the class Λ ∗ of functions, Duke Math. J. 19 (1952), 367-378. Zbl0046.30002
  4. [4] Duren, P. L., Theory of Hp Spaces, Academic Press, New York-San Francisco- London, 1970. Zbl0215.20203
  5. [5] Farkas, H. M., Kra, I., Riemann Surfaces, Springer-Verlag, New York-Heidelberg- Berlin, 1980. 
  6. [6] Gakhov, F. D., Boundary Value Problems, Pergamon Press, Oxford-New York-Paris, 1966. Zbl0141.08001
  7. [7] Garnett, J. B., Bounded Analytic Functions, Academic Press, New York-London, 1981. Zbl0469.30024
  8. [8] Gong, S., Integrals of Cauchy type on the ball, International Press, Cambridge, 1993. Zbl0934.32004
  9. [9] Guseinov, E. G., The Plemelj-Privalov theorem for generalized H¨older classes, Mat. Sb. 183, no. 2 (1992), 21-37 (Russian); translation in Russian Acad. Sci. Sb. Math. 75 (1993), 165-182. 
  10. [10] Heins, M., Hardy Classes on Riemann Surfaces, Springer-Verlag, Berlin-New York, 1969. Zbl0176.03001
  11. [11] Shiga, H., Riemann mappings of invariant components of Kleinian groups, J. London Math. Soc. 80 (2009), 716-728. Zbl1184.30036
  12. [12] Shiga, H., Modulus of continuity, a Hardy-Littlewood theorem and its application, RIMS Kokyuroku Bessatsu, 2010, 127-133. Zbl1220.30058
  13. [13] Pommerenke, C., Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992. Zbl0762.30001
  14. [14] Walsh, J. L., Polynomial expansions of functions defined by Cauchy’s integral, J. Math. Pures Appl. 31 (1952), 221-244. Zbl0049.05203

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.