On boundary behavior of Cauchy integrals
Annales UMCS, Mathematica (2013)
- Volume: 67, Issue: 1, page 65-82
- ISSN: 2083-7402
Access Full Article
topAbstract
topHow to cite
topHiroshige Shiga. "On boundary behavior of Cauchy integrals." Annales UMCS, Mathematica 67.1 (2013): 65-82. <http://eudml.org/doc/268084>.
@article{HiroshigeShiga2013,
abstract = {In this paper, we shall estimate the growth order of the n-th derivative Cauchy integrals at a point in terms of the distance between the point and the boundary of the domain. By using the estimate, we shall generalize Plemelj-Sokthoski theorem. We also consider the boundary behavior of generalized Cauchy integrals on compact bordered Riemann surfaces.},
author = {Hiroshige Shiga},
journal = {Annales UMCS, Mathematica},
keywords = {Cauchy integral; Plemelj-Sokthoski theorem; Riemann surface; Plemelj-Sokhotski theorem},
language = {eng},
number = {1},
pages = {65-82},
title = {On boundary behavior of Cauchy integrals},
url = {http://eudml.org/doc/268084},
volume = {67},
year = {2013},
}
TY - JOUR
AU - Hiroshige Shiga
TI - On boundary behavior of Cauchy integrals
JO - Annales UMCS, Mathematica
PY - 2013
VL - 67
IS - 1
SP - 65
EP - 82
AB - In this paper, we shall estimate the growth order of the n-th derivative Cauchy integrals at a point in terms of the distance between the point and the boundary of the domain. By using the estimate, we shall generalize Plemelj-Sokthoski theorem. We also consider the boundary behavior of generalized Cauchy integrals on compact bordered Riemann surfaces.
LA - eng
KW - Cauchy integral; Plemelj-Sokthoski theorem; Riemann surface; Plemelj-Sokhotski theorem
UR - http://eudml.org/doc/268084
ER -
References
top- [1] Aikawa, H., Modulus of continuity of the Dirichlet solutions, Bull. London Math. Soc. 42 (2010), 857-867.[WoS] Zbl1203.31008
- [2] Bikˇcantaev, I. A., Analogues of a Cauchy kernel on a Riemann surface and someapplications of them, Mat. Sb. (N.S.) 112 (154), no. 2 (6) (1980), 256-282 (Russian); translation in Math. USSR Sb. 40, no. 2 (1981), 241-265.
- [3] Block, I. E., The Plemelj theory for the class Λ ∗ of functions, Duke Math. J. 19 (1952), 367-378. Zbl0046.30002
- [4] Duren, P. L., Theory of Hp Spaces, Academic Press, New York-San Francisco- London, 1970. Zbl0215.20203
- [5] Farkas, H. M., Kra, I., Riemann Surfaces, Springer-Verlag, New York-Heidelberg- Berlin, 1980.
- [6] Gakhov, F. D., Boundary Value Problems, Pergamon Press, Oxford-New York-Paris, 1966. Zbl0141.08001
- [7] Garnett, J. B., Bounded Analytic Functions, Academic Press, New York-London, 1981. Zbl0469.30024
- [8] Gong, S., Integrals of Cauchy type on the ball, International Press, Cambridge, 1993. Zbl0934.32004
- [9] Guseinov, E. G., The Plemelj-Privalov theorem for generalized H¨older classes, Mat. Sb. 183, no. 2 (1992), 21-37 (Russian); translation in Russian Acad. Sci. Sb. Math. 75 (1993), 165-182.
- [10] Heins, M., Hardy Classes on Riemann Surfaces, Springer-Verlag, Berlin-New York, 1969. Zbl0176.03001
- [11] Shiga, H., Riemann mappings of invariant components of Kleinian groups, J. London Math. Soc. 80 (2009), 716-728. Zbl1184.30036
- [12] Shiga, H., Modulus of continuity, a Hardy-Littlewood theorem and its application, RIMS Kokyuroku Bessatsu, 2010, 127-133. Zbl1220.30058
- [13] Pommerenke, C., Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992. Zbl0762.30001
- [14] Walsh, J. L., Polynomial expansions of functions defined by Cauchy’s integral, J. Math. Pures Appl. 31 (1952), 221-244. Zbl0049.05203
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.