### A conservative finite difference scheme for static diffusion equation.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

In this note we establish a necessary and sufficient condition for solvability of the homogeneous Riemann boundary problem with infinity index on a rectifiable open curve. The index of the problem we deal with considers the influence of the requirement of the solutions of the problem, the degree of non-smoothness of the curve at the endpoints as well as the behavior of the coefficient at these points.

We study the homogeneous Riemann-Hilbert problem with a vanishing scalar-valued continuous coefficient. We characterize non-existence of nontrivial solutions in the case where the coefficient has its values along several rays starting from the origin. As a consequence, some results on injectivity and existence of eigenvalues of Toeplitz operators in Hardy spaces are obtained.

In this survey we give geometric interpretations of some standard results on boundary behaviour of holomorphic self-maps in the unit disc of ℂ and generalize them to holomorphic self-maps of some particular domains of ℂⁿ.