The Poisson extension of K -quasihomography on the unit circle
Jan Stankiewicz; Katarzyna Wilczek
Annales UMCS, Mathematica (2011)
- Volume: 65, Issue: 2, page 203-216
- ISSN: 2083-7402
Access Full Article
topAbstract
topHow to cite
topJan Stankiewicz, and Katarzyna Wilczek. " The Poisson extension of K -quasihomography on the unit circle ." Annales UMCS, Mathematica 65.2 (2011): 203-216. <http://eudml.org/doc/268120>.
@article{JanStankiewicz2011,
abstract = {In this paper some estimates for the Poisson extension of a K-quasihomography on the unit circle are given.},
author = {Jan Stankiewicz, Katarzyna Wilczek},
journal = {Annales UMCS, Mathematica},
keywords = {Poisson extension; quasiconformal; quasisymmetric; quasihomography; cross-ratio; quasisymmetric function; functions on the unit circle},
language = {eng},
number = {2},
pages = {203-216},
title = { The Poisson extension of K -quasihomography on the unit circle },
url = {http://eudml.org/doc/268120},
volume = {65},
year = {2011},
}
TY - JOUR
AU - Jan Stankiewicz
AU - Katarzyna Wilczek
TI - The Poisson extension of K -quasihomography on the unit circle
JO - Annales UMCS, Mathematica
PY - 2011
VL - 65
IS - 2
SP - 203
EP - 216
AB - In this paper some estimates for the Poisson extension of a K-quasihomography on the unit circle are given.
LA - eng
KW - Poisson extension; quasiconformal; quasisymmetric; quasihomography; cross-ratio; quasisymmetric function; functions on the unit circle
UR - http://eudml.org/doc/268120
ER -
References
top- Beurling, A., Ahlfors, L. V., The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142.[Crossref] Zbl0072.29602
- Duren, P., Schober, G., A variational method for harmonic mappings onto convex regions, Complex Variables Theory Appl. 9 (1987), 153-168. Zbl0606.30025
- Clunie, J., Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Sci. Fenn., Ser. A I Math. 9 (1984), 3-25. Zbl0506.30007
- Haruki, H., Rassias, T. M., A new characteristic of Mobius transformations by use of Apollonius points of triangles, J. Math. Anal. Appl. 197 (1996), 14-22.[Crossref] Zbl0857.39012
- Kobayashi, O., Apollonius points and anharmonic ratios, Tokyo J. Math. 30 (2007), no. 1, 117-119. Zbl1207.30032
- Krzyż, J. G., Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), 19-24. Zbl0563.30016
- Krzyż, J. G., Universal Teichmüller space and Fourier series, Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995), no. 2, 387-400. Zbl0846.30017
- Krzyż, J. G., Nowak, M., Harmonic automorphism of the unit disk, Continued fractions and geometric function theory (CONFUN) (Trondheim, 1997), J. Comput. Appl. Math. 105 (1999), 337-346. Zbl0955.30017
- Krzyż, J. G., Partyka, D., Harmonic extensions of quasisymmetric mappings, Complex Variables Theory Appl. 33 (1997), 159-176. Zbl0902.30015
- Kühnau, R., Schranken für die Koeffizienten gewisser schlicht abbildender Laurentscher Reihen, Math. Nachr. 41 (1969), 177-183.[Crossref] Zbl0196.09401
- Lehto, O., Virtane, K. I., Quasiconformal mappings in the plane, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
- Partyka, D., The maximal dilatation of Doudy and Earle extension of a quasisymmetric automorphism of the unit circle, Ann. Univ. Mariae Curie-Skłodowska Sect. A 44 (1990), 45-57. Zbl0774.30018
- Partyka, D., The maximal value of the function r &rarr ΦK (√r)2 - r, manuscript, 1995.
- Stankiewicz, J., Wilczek, K., On bilipschitz extensions of automorphisms of the real axis, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 50 (2006), 95-101. Zbl1141.30307
- Wilczek, K., Schwarz lemma for quasihomographies of a Jordan curve, Folia Sci. Univ. Tech. Resoviensis Mat. 20 (1996), 179-192. Zbl0884.30018
- Wilczek, K., Distortion Theorems for the quasihomographies of a Jordan curve, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 25 (1998), 77-88. Zbl1087.30513
- Wilczek, K., Zając, J., A distortion theorem for K-quasiconformal self-mappings of the unit disc, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 26 (1998), 91-102. Zbl1087.30514
- Zając, J. Quasihomographies in the theory of Teichmüller spaces, Dissertationes Math. (Rozprawy Mat.) 357 (1996), 102 pp. Zbl0877.30021
- Zając, J., Harmonic representation of the universal Teichmüller space-the Paprocki space, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 51 (2006), 37-48. Zbl1159.30334
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.