The Poisson extension of K -quasihomography on the unit circle

Jan Stankiewicz; Katarzyna Wilczek

Annales UMCS, Mathematica (2011)

  • Volume: 65, Issue: 2, page 203-216
  • ISSN: 2083-7402

Abstract

top
In this paper some estimates for the Poisson extension of a K-quasihomography on the unit circle are given.

How to cite

top

Jan Stankiewicz, and Katarzyna Wilczek. " The Poisson extension of K -quasihomography on the unit circle ." Annales UMCS, Mathematica 65.2 (2011): 203-216. <http://eudml.org/doc/268120>.

@article{JanStankiewicz2011,
abstract = {In this paper some estimates for the Poisson extension of a K-quasihomography on the unit circle are given.},
author = {Jan Stankiewicz, Katarzyna Wilczek},
journal = {Annales UMCS, Mathematica},
keywords = {Poisson extension; quasiconformal; quasisymmetric; quasihomography; cross-ratio; quasisymmetric function; functions on the unit circle},
language = {eng},
number = {2},
pages = {203-216},
title = { The Poisson extension of K -quasihomography on the unit circle },
url = {http://eudml.org/doc/268120},
volume = {65},
year = {2011},
}

TY - JOUR
AU - Jan Stankiewicz
AU - Katarzyna Wilczek
TI - The Poisson extension of K -quasihomography on the unit circle
JO - Annales UMCS, Mathematica
PY - 2011
VL - 65
IS - 2
SP - 203
EP - 216
AB - In this paper some estimates for the Poisson extension of a K-quasihomography on the unit circle are given.
LA - eng
KW - Poisson extension; quasiconformal; quasisymmetric; quasihomography; cross-ratio; quasisymmetric function; functions on the unit circle
UR - http://eudml.org/doc/268120
ER -

References

top
  1. Beurling, A., Ahlfors, L. V., The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142.[Crossref] Zbl0072.29602
  2. Duren, P., Schober, G., A variational method for harmonic mappings onto convex regions, Complex Variables Theory Appl. 9 (1987), 153-168. Zbl0606.30025
  3. Clunie, J., Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Sci. Fenn., Ser. A I Math. 9 (1984), 3-25. Zbl0506.30007
  4. Haruki, H., Rassias, T. M., A new characteristic of Mobius transformations by use of Apollonius points of triangles, J. Math. Anal. Appl. 197 (1996), 14-22.[Crossref] Zbl0857.39012
  5. Kobayashi, O., Apollonius points and anharmonic ratios, Tokyo J. Math. 30 (2007), no. 1, 117-119. Zbl1207.30032
  6. Krzyż, J. G., Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), 19-24. Zbl0563.30016
  7. Krzyż, J. G., Universal Teichmüller space and Fourier series, Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995), no. 2, 387-400. Zbl0846.30017
  8. Krzyż, J. G., Nowak, M., Harmonic automorphism of the unit disk, Continued fractions and geometric function theory (CONFUN) (Trondheim, 1997), J. Comput. Appl. Math. 105 (1999), 337-346. Zbl0955.30017
  9. Krzyż, J. G., Partyka, D., Harmonic extensions of quasisymmetric mappings, Complex Variables Theory Appl. 33 (1997), 159-176. Zbl0902.30015
  10. Kühnau, R., Schranken für die Koeffizienten gewisser schlicht abbildender Laurentscher Reihen, Math. Nachr. 41 (1969), 177-183.[Crossref] Zbl0196.09401
  11. Lehto, O., Virtane, K. I., Quasiconformal mappings in the plane, Springer-Verlag, Berlin-Heidelberg-New York, 1973. 
  12. Partyka, D., The maximal dilatation of Doudy and Earle extension of a quasisymmetric automorphism of the unit circle, Ann. Univ. Mariae Curie-Skłodowska Sect. A 44 (1990), 45-57. Zbl0774.30018
  13. Partyka, D., The maximal value of the function r &rarr ΦK (√r)2 - r, manuscript, 1995. 
  14. Stankiewicz, J., Wilczek, K., On bilipschitz extensions of automorphisms of the real axis, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 50 (2006), 95-101. Zbl1141.30307
  15. Wilczek, K., Schwarz lemma for quasihomographies of a Jordan curve, Folia Sci. Univ. Tech. Resoviensis Mat. 20 (1996), 179-192. Zbl0884.30018
  16. Wilczek, K., Distortion Theorems for the quasihomographies of a Jordan curve, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 25 (1998), 77-88. Zbl1087.30513
  17. Wilczek, K., Zając, J., A distortion theorem for K-quasiconformal self-mappings of the unit disc, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 26 (1998), 91-102. Zbl1087.30514
  18. Zając, J. Quasihomographies in the theory of Teichmüller spaces, Dissertationes Math. (Rozprawy Mat.) 357 (1996), 102 pp. Zbl0877.30021
  19. Zając, J., Harmonic representation of the universal Teichmüller space-the Paprocki space, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 51 (2006), 37-48. Zbl1159.30334

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.