Quasihomographies in the theory of Teichmüller spaces
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1996
Access Full Book
topAbstract
topHow to cite
topZając Józef. Quasihomographies in the theory of Teichmüller spaces. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1996. <http://eudml.org/doc/270067>.
@book{ZającJózef1996,
abstract = {CONTENTSIntroduction............................................................................................................................5 I. Special functions of quasiconformal theory.....................................................................10 1. Introduction.................................................................................................................10 2. The distortion function $Φ_K$.....................................................................................11 3. Quasisymmetric functions............................................................................................19 4. Functional identities for special functions....................................................................27 5. Applications..................................................................................................................38 II. Quasihomographies of a circle.......................................................................................42 1. Introduction..................................................................................................................42 2. Introduction to quasihomographies..............................................................................42 3. Quasihomographies and quasisymmetric functions on the real line.............................45 4. Quasihomographies and quasisymmetric functions on the unit circle...........................48 5. Quasisymmetric functions as quasihomographies.........................................................51 III. Distortion theorems for quasihomographies....................................................................57 1. Introduction...................................................................................................................57 2. Similarities.....................................................................................................................57 3. Distortion theorems.......................................................................................................60 4. Normal and compact families of quasihomographies.....................................................67 5. Topological characterization of quasihomographies.......................................................69 IV. Quasihomographies of a Jordan curve ...........................................................................72 1. Introduction...................................................................................................................72 2. Harmonic cross-ratio.....................................................................................................72 3. One-dimensional quasiconformal mappings..................................................................76 4. Complete boundary transformations.............................................................................78 5. Quasicircles...................................................................................................................80 V. The universal Teichmüller space.......................................................................................84 1. Introduction....................................................................................................................84 2. The universal Teichmüller space of a circle...................................................................85 3. The universal Teichmüller space of an oriented Jordan curve........................................87 4. The space of normalized quasihomographies................................................................91 5. A linearization formula....................................................................................................94Acknowledgements...................................................................................................................97References...............................................................................................................................981991 Mathematics Subject Classification: 32H10, 42B10, 32A07, 46E22.},
author = {Zając Józef},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Quasihomographies in the theory of Teichmüller spaces},
url = {http://eudml.org/doc/270067},
year = {1996},
}
TY - BOOK
AU - Zając Józef
TI - Quasihomographies in the theory of Teichmüller spaces
PY - 1996
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction............................................................................................................................5 I. Special functions of quasiconformal theory.....................................................................10 1. Introduction.................................................................................................................10 2. The distortion function $Φ_K$.....................................................................................11 3. Quasisymmetric functions............................................................................................19 4. Functional identities for special functions....................................................................27 5. Applications..................................................................................................................38 II. Quasihomographies of a circle.......................................................................................42 1. Introduction..................................................................................................................42 2. Introduction to quasihomographies..............................................................................42 3. Quasihomographies and quasisymmetric functions on the real line.............................45 4. Quasihomographies and quasisymmetric functions on the unit circle...........................48 5. Quasisymmetric functions as quasihomographies.........................................................51 III. Distortion theorems for quasihomographies....................................................................57 1. Introduction...................................................................................................................57 2. Similarities.....................................................................................................................57 3. Distortion theorems.......................................................................................................60 4. Normal and compact families of quasihomographies.....................................................67 5. Topological characterization of quasihomographies.......................................................69 IV. Quasihomographies of a Jordan curve ...........................................................................72 1. Introduction...................................................................................................................72 2. Harmonic cross-ratio.....................................................................................................72 3. One-dimensional quasiconformal mappings..................................................................76 4. Complete boundary transformations.............................................................................78 5. Quasicircles...................................................................................................................80 V. The universal Teichmüller space.......................................................................................84 1. Introduction....................................................................................................................84 2. The universal Teichmüller space of a circle...................................................................85 3. The universal Teichmüller space of an oriented Jordan curve........................................87 4. The space of normalized quasihomographies................................................................91 5. A linearization formula....................................................................................................94Acknowledgements...................................................................................................................97References...............................................................................................................................981991 Mathematics Subject Classification: 32H10, 42B10, 32A07, 46E22.
LA - eng
UR - http://eudml.org/doc/270067
ER -
Citations in EuDML Documents
top- Jan Stankiewicz, Katarzyna Wilczek, The Poisson extension of K -quasihomography on the unit circle
- Dariusz Partyka, On a modification of the Poisson integral operator
- Dariusz Partyka, On a modification of the Poisson integral operator
- Dariusz Partyka, Ken Sakan, Józef Zając, The harmonic and quasiconformal extension operators
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.