Quasihomographies in the theory of Teichmüller spaces

Zając Józef

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1996

Abstract

top
CONTENTSIntroduction............................................................................................................................5   I. Special functions of quasiconformal theory.....................................................................10      1. Introduction.................................................................................................................10      2. The distortion function Φ K .....................................................................................11      3. Quasisymmetric functions............................................................................................19      4. Functional identities for special functions....................................................................27      5. Applications..................................................................................................................38   II. Quasihomographies of a circle.......................................................................................42      1. Introduction..................................................................................................................42      2. Introduction to quasihomographies..............................................................................42      3. Quasihomographies and quasisymmetric functions on the real line.............................45      4. Quasihomographies and quasisymmetric functions on the unit circle...........................48      5. Quasisymmetric functions as quasihomographies.........................................................51   III. Distortion theorems for quasihomographies....................................................................57      1. Introduction...................................................................................................................57      2. Similarities.....................................................................................................................57      3. Distortion theorems.......................................................................................................60      4. Normal and compact families of quasihomographies.....................................................67      5. Topological characterization of quasihomographies.......................................................69   IV. Quasihomographies of a Jordan curve ...........................................................................72      1. Introduction...................................................................................................................72      2. Harmonic cross-ratio.....................................................................................................72      3. One-dimensional quasiconformal mappings..................................................................76      4. Complete boundary transformations.............................................................................78      5. Quasicircles...................................................................................................................80   V. The universal Teichmüller space.......................................................................................84      1. Introduction....................................................................................................................84      2. The universal Teichmüller space of a circle...................................................................85      3. The universal Teichmüller space of an oriented Jordan curve........................................87      4. The space of normalized quasihomographies................................................................91      5. A linearization formula....................................................................................................94Acknowledgements...................................................................................................................97References...............................................................................................................................981991 Mathematics Subject Classification: 32H10, 42B10, 32A07, 46E22.

How to cite

top

Zając Józef. Quasihomographies in the theory of Teichmüller spaces. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1996. <http://eudml.org/doc/270067>.

@book{ZającJózef1996,
abstract = {CONTENTSIntroduction............................................................................................................................5   I. Special functions of quasiconformal theory.....................................................................10      1. Introduction.................................................................................................................10      2. The distortion function $Φ_K$.....................................................................................11      3. Quasisymmetric functions............................................................................................19      4. Functional identities for special functions....................................................................27      5. Applications..................................................................................................................38   II. Quasihomographies of a circle.......................................................................................42      1. Introduction..................................................................................................................42      2. Introduction to quasihomographies..............................................................................42      3. Quasihomographies and quasisymmetric functions on the real line.............................45      4. Quasihomographies and quasisymmetric functions on the unit circle...........................48      5. Quasisymmetric functions as quasihomographies.........................................................51   III. Distortion theorems for quasihomographies....................................................................57      1. Introduction...................................................................................................................57      2. Similarities.....................................................................................................................57      3. Distortion theorems.......................................................................................................60      4. Normal and compact families of quasihomographies.....................................................67      5. Topological characterization of quasihomographies.......................................................69   IV. Quasihomographies of a Jordan curve ...........................................................................72      1. Introduction...................................................................................................................72      2. Harmonic cross-ratio.....................................................................................................72      3. One-dimensional quasiconformal mappings..................................................................76      4. Complete boundary transformations.............................................................................78      5. Quasicircles...................................................................................................................80   V. The universal Teichmüller space.......................................................................................84      1. Introduction....................................................................................................................84      2. The universal Teichmüller space of a circle...................................................................85      3. The universal Teichmüller space of an oriented Jordan curve........................................87      4. The space of normalized quasihomographies................................................................91      5. A linearization formula....................................................................................................94Acknowledgements...................................................................................................................97References...............................................................................................................................981991 Mathematics Subject Classification: 32H10, 42B10, 32A07, 46E22.},
author = {Zając Józef},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Quasihomographies in the theory of Teichmüller spaces},
url = {http://eudml.org/doc/270067},
year = {1996},
}

TY - BOOK
AU - Zając Józef
TI - Quasihomographies in the theory of Teichmüller spaces
PY - 1996
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction............................................................................................................................5   I. Special functions of quasiconformal theory.....................................................................10      1. Introduction.................................................................................................................10      2. The distortion function $Φ_K$.....................................................................................11      3. Quasisymmetric functions............................................................................................19      4. Functional identities for special functions....................................................................27      5. Applications..................................................................................................................38   II. Quasihomographies of a circle.......................................................................................42      1. Introduction..................................................................................................................42      2. Introduction to quasihomographies..............................................................................42      3. Quasihomographies and quasisymmetric functions on the real line.............................45      4. Quasihomographies and quasisymmetric functions on the unit circle...........................48      5. Quasisymmetric functions as quasihomographies.........................................................51   III. Distortion theorems for quasihomographies....................................................................57      1. Introduction...................................................................................................................57      2. Similarities.....................................................................................................................57      3. Distortion theorems.......................................................................................................60      4. Normal and compact families of quasihomographies.....................................................67      5. Topological characterization of quasihomographies.......................................................69   IV. Quasihomographies of a Jordan curve ...........................................................................72      1. Introduction...................................................................................................................72      2. Harmonic cross-ratio.....................................................................................................72      3. One-dimensional quasiconformal mappings..................................................................76      4. Complete boundary transformations.............................................................................78      5. Quasicircles...................................................................................................................80   V. The universal Teichmüller space.......................................................................................84      1. Introduction....................................................................................................................84      2. The universal Teichmüller space of a circle...................................................................85      3. The universal Teichmüller space of an oriented Jordan curve........................................87      4. The space of normalized quasihomographies................................................................91      5. A linearization formula....................................................................................................94Acknowledgements...................................................................................................................97References...............................................................................................................................981991 Mathematics Subject Classification: 32H10, 42B10, 32A07, 46E22.
LA - eng
UR - http://eudml.org/doc/270067
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.