Tetravalent Arc-Transitive Graphs of Order 3p 2

Mohsen Ghasemi

Discussiones Mathematicae Graph Theory (2014)

  • Volume: 34, Issue: 3, page 567-575
  • ISSN: 2083-5892

Abstract

top
Let s be a positive integer. A graph is s-transitive if its automorphism group is transitive on s-arcs but not on (s + 1)-arcs. Let p be a prime. In this article a complete classification of tetravalent s-transitive graphs of order 3p2 is given

How to cite

top

Mohsen Ghasemi. " Tetravalent Arc-Transitive Graphs of Order 3p 2 ." Discussiones Mathematicae Graph Theory 34.3 (2014): 567-575. <http://eudml.org/doc/268227>.

@article{MohsenGhasemi2014,
abstract = {Let s be a positive integer. A graph is s-transitive if its automorphism group is transitive on s-arcs but not on (s + 1)-arcs. Let p be a prime. In this article a complete classification of tetravalent s-transitive graphs of order 3p2 is given},
author = {Mohsen Ghasemi},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {s-transitive graphs; symmetric graphs; Cayley graphs; -transitive graphs},
language = {eng},
number = {3},
pages = {567-575},
title = { Tetravalent Arc-Transitive Graphs of Order 3p 2 },
url = {http://eudml.org/doc/268227},
volume = {34},
year = {2014},
}

TY - JOUR
AU - Mohsen Ghasemi
TI - Tetravalent Arc-Transitive Graphs of Order 3p 2
JO - Discussiones Mathematicae Graph Theory
PY - 2014
VL - 34
IS - 3
SP - 567
EP - 575
AB - Let s be a positive integer. A graph is s-transitive if its automorphism group is transitive on s-arcs but not on (s + 1)-arcs. Let p be a prime. In this article a complete classification of tetravalent s-transitive graphs of order 3p2 is given
LA - eng
KW - s-transitive graphs; symmetric graphs; Cayley graphs; -transitive graphs
UR - http://eudml.org/doc/268227
ER -

References

top
  1. [1] Y.G. Baik, Y.-Q. Feng, H.S. Sim and M.Y. Xu, On the normality of Cayley graphs of abelian groups, Algebra Colloq. 5 (1998) 297-304. Zbl0904.05037
  2. [2] N. Biggs, Algebraic Graph Theory, Second Ed. (Cambridge University Press, Cam- bridge, 1993). Zbl0284.05101
  3. [3] W. Bosma, C. Cannon and C. Playoust, The MAGMA algebra system I: the user language, J. Symbolic Comput. 24 (1997) 235-265. doi:10.1006/jsco.1996.0125[Crossref] Zbl0898.68039
  4. [4] C.Y. Chao, On the classification of symmetric graphs with a prime number of ver- tices, Trans. Amer. Math. Soc. 158 (1971) 247-256. doi:10.1090/S0002-9947-1971-0279000-7[Crossref] 
  5. [5] Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory (B) 42 (1987) 196-211. doi:10.1016/0095-8956(87)90040-2[Crossref] Zbl0583.05032
  6. [6] M. Conder, Orders of symmetric cubic graphs, The Second Internetional Workshop on Group Theory and Algebraic Combinatorics, (Peking University, Beijing, 2008). 
  7. [7] M. Conder and C.E. Praeger, Remarks on path-transitivity on finite graphs, Euro- pean J. Combin. 17 (1996) 371-378. doi:10.1006/eujc.1996.0030[Crossref] Zbl0871.05029
  8. [8] D.Ž. Djoković and G.L. Miller, Regular groups of automorphisms of cubic graphs, J. Combin. Theory (B) 29 (1980) 195-230. doi:10.1016/0095-8956(80)90081-7[Crossref] 
  9. [9] Y.-Q. Feng and J.H. Kwak, One-regular cubic graphs of order a small number times a prime or a prime square, J. Aust. Math. Soc. 76 (2004) 345-356. doi:10.1017/S1446788700009903[Crossref] Zbl1055.05078
  10. [10] Y.-Q. Feng and J.H. Kwak, Classifying cubic symmetric graphs of order 10p or 10p2, Sci. China (A) 49 (2006) 300-319. doi:10.1007/s11425-006-0300-9[Crossref] Zbl1109.05051
  11. [11] Y.-Q. Feng and J.H. Kwak, Cubic symmetric graphs of order twice an odd prime power, J. Aust. Math. Soc. 81 (2006) 153-164. doi:10.1017/S1446788700015792[Crossref] 
  12. [12] Y.-Q. Feng and J.H. Kwak, Cubic symmetric graphs of order a small number times a prime or a prime square, J. Combin. Theory (B) 97 (2007) 627-646. doi:10.1016/j.jctb.2006.11.001[Crossref] Zbl1118.05043
  13. [13] Y.-Q. Feng, J.H. Kwak and K.S. Wang, Classifying cubic symmetric graphs of order 8p or 8p2, European J. Combin. 26 (2005) 1033-1052. doi:10.1016/j.ejc.2004.06.015[Crossref] Zbl1071.05043
  14. [14] R. Frucht, A one-regular graph of degree three, Canad. J. Math. 4 (1952) 240-247. doi:10.4153/CJM-1952-022-9[Crossref] Zbl0046.40903
  15. [15] A. Gardiner and C.E. Praeger, On 4-valent symmetric graphs, European. J. Combin. 15 (1994) 375-381. doi:10.1006/eujc.1994.1041[Crossref] Zbl0806.05037
  16. [16] A. Gardiner and C.E. Praeger, A characterization of certain families of 4-valent symmetric graphs, European. J. Combin. 15 (1994) 383-397. doi:10.1006/eujc.1994.1042 Zbl0806.05038
  17. [17] M. Ghasemi, A classification of tetravalent one-regular graphs of order 3p2, Colloq. Math. 128 (2012) 15-24. doi:10.4064/cm128-1-3[Crossref][WoS] Zbl1258.05048
  18. [18] M. Ghasemi and J.-X. Zhou, Tetravalent s-transitive graphs of order 4p2, Graphs Combin. 29 (2013) 87-97. doi:10.007/s00373-011-1093-3 Zbl1258.05049
  19. [19] D. Gorenstein, Finite Simple Groups (Plenum Press, New York, 1982). doi:10.1007/978-1-4684-8497-7[Crossref] Zbl0483.20008
  20. [20] C.H. Li, Finite s-arc-transitive graphs, The Second Internetional Workshop on Group Theory and Algebraic Combinatorics, (Peking University, Beijing, 2008). 
  21. [21] C.H. Li, The finite vertex-primitive and vertex-biprimitive s-transitive graphs for s ≥ 4, Trans. Amer. Math. Soc. 353 (2001) 3511-3529. doi:10.1090/S0002-9947-01-02768-4[Crossref] Zbl0974.05042
  22. [22] C.H. Li, Z.P. Lu and D. Maruˇsiˇc, On primitive permutation groups with small sub- orbits and their orbital graphs, J. Algebra 279 (2004) 749-770. doi:10.1016/j.jalgebra.2004.03.005[Crossref] 
  23. [23] C.H. Li, Z.P. Lu and H. Zhang, Tetravalent edge-transitive Cayley graphs with odd number of vertices, J. Combin. Theory (B) 96 (2006) 164-181. doi:10.1016/j.jctb.2005.07.003[Crossref] Zbl1078.05039
  24. [24] R.C. Miller, The trivalent symmetric graphs of girth at most six, J. Combin. Theory (B) 10 (1971) 163-182. doi:10.1016/0095-8956(71)90075-X[Crossref] 
  25. [25] P. Potoˇcnik, P. Spiga and G. Verret. http://www.matapp.unimib.it/spiga/ 
  26. [26] P. Potoˇcnik, P. Spiga and G. Verret, Cubic vertex-transitive graphs on up to 1280 vertices. arXiv:1201.5317v1 [math.CO]. Zbl1256.05102
  27. [27] C.E. Praeger, An O’Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, J. London Math. Soc. 47 (1993) 227-239. doi:10.1112/jlms/s2-47.2.227[Crossref] 
  28. [28] D.J.S. Robinson, A Course in the Theory of Groups (Springer-Verlag, New York, 1982). Zbl0483.20001
  29. [29] W.T. Tutte, A family of cubical graphs, Proc. Camb. Phil. Soc. 43 (1947) 459-474. doi:10.1017/S0305004100023720[Crossref] Zbl0029.42401
  30. [30] R.J. Wang and M.Y. Xu, A classification of symmetric graphs of order 3p, J. Com- bin. Theory (B) 58 (1993) 197-216. doi:10.1006/jctb.1993.1037[Crossref] Zbl0793.05074
  31. [31] R. Weiss, The nonexistence of 8-transitive graphs, Combinatorica 1 (1981) 309-311. doi:10.1007/BF02579337[Crossref] Zbl0486.05032
  32. [32] S. Wilson and P. Potoˇcnik, A Census of edge-transitive tetravalent graphs. http://jan. ucc.nau.edu/swilson/C4Site/index.html. 
  33. [33] M.Y. Xu, A note on one-regular graphs, Chinese Sci. Bull. 45 (2000) 2160-2162. 
  34. [34] J. Xu and M.Y. Xu, Arc-transitive Cayley graphs of valency at most four on abelian groups, Southeast Asian Bull. Math. 25 (2001) 355-363. doi:10.1007/s10012-001-0355-z [Crossref] Zbl0993.05086
  35. [35] J.-X. Zhou, Tetravalent s-transitive graphs of order 4p, Discrete Math. 309 (2009) 6081-6086. doi:10.1016/j.disc.2009.05.014[Crossref][WoS] 
  36. [36] J.-X. Zhou and Y.-Q. Feng, Tetravalent s-transitive graphs of order twice a prime power, J. Aust. Math. Soc. 88 (2010) 277-288. doi:10.1017/S1446788710000066 [Crossref] 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.