γ-Cycles And Transitivity By Monochromatic Paths In Arc-Coloured Digraphs
Enrique Casas-Bautista; Hortensia Galeana-Sánchez; Rocío Rojas-Monroy
Discussiones Mathematicae Graph Theory (2013)
- Volume: 33, Issue: 3, page 493-507
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topEnrique Casas-Bautista, Hortensia Galeana-Sánchez, and Rocío Rojas-Monroy. "γ-Cycles And Transitivity By Monochromatic Paths In Arc-Coloured Digraphs." Discussiones Mathematicae Graph Theory 33.3 (2013): 493-507. <http://eudml.org/doc/268248>.
@article{EnriqueCasas2013,
abstract = {We call the digraph D an m-coloured digraph if its arcs are coloured with m colours. If D is an m-coloured digraph and a ∈ A(D), colour(a) will denote the colour has been used on a. A path (or a cycle) is called monochromatic if all of its arcs are coloured alike. A γ-cycle in D is a sequence of vertices, say γ = (u0, u1, . . . , un), such that ui ≠ uj if i ≠ j and for every i ∈ 0, 1, . . . , n there is a uiui+1-monochromatic path in D and there is no ui+1ui-monochromatic path in D (the indices of the vertices will be taken mod n+1). A set N ⊆ V (D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices u, v ∈ N there is no monochromatic path between them and; (ii) for every vertex x ∈ V (D) N there is a vertex y ∈ N such that there is an xy-monochromatic path. Let D be a finite m-coloured digraph. Suppose that C1,C2 is a partition of C, the set of colours of D, and Di will be the spanning subdigraph of D such that A(Di) = a ∈ A(D) | colour(a) ∈ Ci. In this paper, we give some sufficient conditions for the existence of a kernel by monochromatic paths in a digraph with the structure mentioned above. In particular we obtain an extension of the original result by B. Sands, N. Sauer and R. Woodrow that asserts: Every 2-coloured digraph has a kernel by monochromatic paths. Also, we extend other results obtained before where it is proved that under some conditions an m-coloured digraph has no γ-cycles.},
author = {Enrique Casas-Bautista, Hortensia Galeana-Sánchez, Rocío Rojas-Monroy},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {digraph; kernel; kernel by monochromatic paths; γ-cycle; -cycle},
language = {eng},
number = {3},
pages = {493-507},
title = {γ-Cycles And Transitivity By Monochromatic Paths In Arc-Coloured Digraphs},
url = {http://eudml.org/doc/268248},
volume = {33},
year = {2013},
}
TY - JOUR
AU - Enrique Casas-Bautista
AU - Hortensia Galeana-Sánchez
AU - Rocío Rojas-Monroy
TI - γ-Cycles And Transitivity By Monochromatic Paths In Arc-Coloured Digraphs
JO - Discussiones Mathematicae Graph Theory
PY - 2013
VL - 33
IS - 3
SP - 493
EP - 507
AB - We call the digraph D an m-coloured digraph if its arcs are coloured with m colours. If D is an m-coloured digraph and a ∈ A(D), colour(a) will denote the colour has been used on a. A path (or a cycle) is called monochromatic if all of its arcs are coloured alike. A γ-cycle in D is a sequence of vertices, say γ = (u0, u1, . . . , un), such that ui ≠ uj if i ≠ j and for every i ∈ 0, 1, . . . , n there is a uiui+1-monochromatic path in D and there is no ui+1ui-monochromatic path in D (the indices of the vertices will be taken mod n+1). A set N ⊆ V (D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices u, v ∈ N there is no monochromatic path between them and; (ii) for every vertex x ∈ V (D) N there is a vertex y ∈ N such that there is an xy-monochromatic path. Let D be a finite m-coloured digraph. Suppose that C1,C2 is a partition of C, the set of colours of D, and Di will be the spanning subdigraph of D such that A(Di) = a ∈ A(D) | colour(a) ∈ Ci. In this paper, we give some sufficient conditions for the existence of a kernel by monochromatic paths in a digraph with the structure mentioned above. In particular we obtain an extension of the original result by B. Sands, N. Sauer and R. Woodrow that asserts: Every 2-coloured digraph has a kernel by monochromatic paths. Also, we extend other results obtained before where it is proved that under some conditions an m-coloured digraph has no γ-cycles.
LA - eng
KW - digraph; kernel; kernel by monochromatic paths; γ-cycle; -cycle
UR - http://eudml.org/doc/268248
ER -
References
top- [1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, London, 2001). Zbl0958.05002
- [2] C. Berge, Graphs (North-Holland, Amsterdam, 1985).
- [3] C. Berge and P. Duchet, Recent problems and results about kernels in directed graphs, Discrete Math. 86 (1990) 27-31. doi:10.1016/0012-365X(90)90346-J[Crossref] Zbl0721.05027
- [4] P. Delgado-Escalante and H. Galena-Sánchez, Kernels and cycles’ subdivisions in arc-colored tournaments, Discuss. Math. Graph Theory 29 (2009) 101-117. doi:10.7151/dmgt.1435[Crossref] Zbl1213.05108
- [5] P. Delgado-Escalante and H. Galena-Sánchez, On monochromatic paths and bicolored subdigraphs in arc-colored tournaments, Discuss. Math. Graph Theory 31 (2011) 791-820. doi:10.7151/dmgt.1580[Crossref] Zbl1259.05068
- [6] P. Duchet, Graphes noyau - parfaits, Ann. Discrete Math. 9 (1980) 93-101. doi:10.1016/S0167-5060(08)70041-4[Crossref]
- [7] P. Duchet, Classical perfect graphs, An introduction with emphasis on triangulated and interval graphs, Ann. Discrete Math. 21 (1984) 67-96. Zbl0558.05038
- [8] P. Duchet and H. Meynel, A note on kernel-critical graphs, Discrete Math. 33 (1981) 103-105. doi:10.1016/0012-365X(81)90264-8[Crossref]
- [9] H. Galena-Sánchez, On monochromatic paths and monochromatic cycles in edge coloured tournaments, Discrete Math. 156 (1996) 103-112. doi:10.1016/0012-365X(95)00036-V[Crossref]
- [10] H. Galena-Sánchez, Kernels in edge-coloured digraphs, Discrete Math. 184 (1998) 87-99. doi:10.1016/S0012-365X(97)00162-3[WoS][Crossref]
- [11] H. Galena-Sánchez and J.J. García-Ruvalcaba, Kernels in the closure of coloured digraphs, Discuss. Math. Graph Theory 20 (2000) 243-254. doi:10.7151/dmgt.1123[Crossref] Zbl0990.05059
- [12] H. Galeana-Sánchez, J.J. García-Ruvalcaba, On graphs all of whose {C3, T3}-free arc colorations are kernel perfect, Discuss. Math. Graph Theory 21 (2001) 77-93. doi:10.7151/dmgt.1134 [Crossref] Zbl0990.05060
- [13] H. Galena-Sánchez, G. Gaytán-Gómez and R. Rojas-Monroy, Monochromatic cycles and monochromatic paths in arc-coloured digraphs, Discuss. Math. Graph Theory 31 (2011) 283-292. doi:10.7151/dmgt.1545[Crossref] Zbl1234.05112
- [14] H. Galena-Sánchez, V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67-76. doi:10.1016/0012-365X(84)90131-6[Crossref] Zbl0529.05024
- [15] H. Galeana-Sánchez, V. Neumann-Lara, On kernel-perfect critical digraphs, Discrete Math. 59 (1986) 257-265. doi:10.1016/0012-365X(86)90172-X[Crossref] Zbl0593.05034
- [16] H. Galeana-Sánchez and R. Rojas-Monroy, A counterexample to a conjecture on edge-coloured tournaments, Discrete Math. 282 (2004) 275-276. doi:10.1016/j.disc.2003.11.015[Crossref] Zbl1042.05039
- [17] H. Galeana-Sánchez and R. Rojas-Monroy, On monochromatic paths and monochromatic 4-cycles in edge coloured bipartite tournaments, Discrete Math. 285 (2004) 313-318. doi:10.1016/j.disc.2004.03.005[Crossref] Zbl1049.05042
- [18] H. Galeana-Sánchez, R. Rojas-Monroy, Independent domination by monochromatic paths in arc coloured bipartite tournaments, AKCE J. Graphs. Combin. 6 (2009) 267-285. Zbl1210.05054
- [19] H. Galeana-Sánchez and R. Rojas-Monroy, Monochromatic paths and monochromatic cycles in edge-coloured k-partite tournaments, Ars Combin. 97A (2010) 351-365. Zbl1249.05165
- [20] H. Galena-Sánchez, R. Rojas-Monroy and B. Zavala, Monochromatic paths and monochromatic sets of arcs in 3-quasitransitive digraphs, Discuss. Math. Graph Theory 29 (2009) 337-347. doi:10.7151/dmgt.1450 Zbl1193.05078
- [21] H. Galena-Sánchez, R. Rojas-Monroy and B. Zavala, Monochromatic paths and monochromatic sets of arcs in quasi-transitive digraphs, Discuss. Math. Graph Theory 30 (2010) 545-553. doi:10.7151/dmgt.1512[Crossref] Zbl1217.05089
- [22] G. Hahn, P. Ille and R. Woodrow, Absorbing sets in arc-coloured tournaments, Discrete Math. 283 (2004) 93-99. doi:10.1016/j.disc.2003.10.024[Crossref] Zbl1042.05049
- [23] J.M. Le Bars, Counterexample of the 0 − 1 law for fragments of existential secondorder logic; an overview, Bull. Symbolic Logic 6 (2000) 67-82. doi:10.2307/421076[Crossref]
- [24] J.M. Le Bars, The 0−1 law fails for frame satisfiability of propositional model logic, in: Proceedings of the 17th Symposium on Logic in Computer Science (2002) 225-234. doi:10.1109/LICS.2002.1029831 [Crossref]
- [25] J. von Leeuwen, Having a Grundy numbering is NP-complete, Report 207 Computer Science Department, Pennsylvania State University, University Park, PA (1976).
- [26] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1944). Zbl0063.05930
- [27] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory (B) 33 (1982) 271-275. doi:10.1016/0095-8956(82)90047-8[Crossref] Zbl0488.05036
- [28] S. Minggang, On monochromatic paths in m-coloured tournaments, J. Combin, Theory (B) 45 (1988) 108-111. doi:10.1016/0095-8956(88)90059-7[Crossref] Zbl0654.05033
- [29] I. Włoch, On kernels by monochromatic paths in the corona of digraphs, Cent. Eur. J. Math. 6 (2008) 537-542. doi:10.7151/s11533-008-0044-6[Crossref] Zbl1152.05033
- [30] I. Włoch, On imp-sets and kernels by monochromatic paths in duplication, Ars Combin. 83 (2007) 93-99. Zbl1174.05114
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.