Monochromatic cycles and monochromatic paths in arc-colored digraphs
Hortensia Galeana-Sánchez; Guadalupe Gaytán-Gómez; Rocío Rojas-Monroy
Discussiones Mathematicae Graph Theory (2011)
- Volume: 31, Issue: 2, page 283-292
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topHortensia Galeana-Sánchez, Guadalupe Gaytán-Gómez, and Rocío Rojas-Monroy. "Monochromatic cycles and monochromatic paths in arc-colored digraphs." Discussiones Mathematicae Graph Theory 31.2 (2011): 283-292. <http://eudml.org/doc/270813>.
@article{HortensiaGaleana2011,
abstract = {We call the digraph D an m-colored digraph if the arcs of D are colored with m colors. A path (or a cycle) is called monochromatic if all of its arcs are colored alike. A cycle is called a quasi-monochromatic cycle if with at most one exception all of its arcs are colored alike. A subdigraph H in D is called rainbow if all its arcs have different colors. A set N ⊆ V(D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices u,v ∈ N there is no monochromatic path between them and; (ii) for every vertex x ∈ V(D)-N there is a vertex y ∈ N such that there is an xy-monochromatic path. The closure of D, denoted by ℭ(D), is the m-colored multidigraph defined as follows: V(ℭ(D)) = V(D), A(ℭ(D)) = A(D)∪(u,v) with color i | there exists a uv-monochromatic path colored i contained in D. Notice that for any digraph D, ℭ (ℭ(D)) ≅ ℭ(D) and D has a kernel by monochromatic paths if and only if ℭ(D) has a kernel.
Let D be a finite m-colored digraph. Suppose that there is a partition C = C₁ ∪ C₂ of the set of colors of D such that every cycle in the subdigraph $D[C_i]$ spanned by the arcs with colors in $C_i$ is monochromatic. We show that if ℭ(D) does not contain neither rainbow triangles nor rainbow P₃ involving colors of both C₁ and C₂, then D has a kernel by monochromatic paths.
This result is a wide extension of the original result by Sands, Sauer and Woodrow that asserts: Every 2-colored digraph has a kernel by monochromatic paths (since in this case there are no rainbow triangles in ℭ(D)).},
author = {Hortensia Galeana-Sánchez, Guadalupe Gaytán-Gómez, Rocío Rojas-Monroy},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {kernel; kernel by monochromatic paths; monochromatic cycles; monochromatic paths},
language = {eng},
number = {2},
pages = {283-292},
title = {Monochromatic cycles and monochromatic paths in arc-colored digraphs},
url = {http://eudml.org/doc/270813},
volume = {31},
year = {2011},
}
TY - JOUR
AU - Hortensia Galeana-Sánchez
AU - Guadalupe Gaytán-Gómez
AU - Rocío Rojas-Monroy
TI - Monochromatic cycles and monochromatic paths in arc-colored digraphs
JO - Discussiones Mathematicae Graph Theory
PY - 2011
VL - 31
IS - 2
SP - 283
EP - 292
AB - We call the digraph D an m-colored digraph if the arcs of D are colored with m colors. A path (or a cycle) is called monochromatic if all of its arcs are colored alike. A cycle is called a quasi-monochromatic cycle if with at most one exception all of its arcs are colored alike. A subdigraph H in D is called rainbow if all its arcs have different colors. A set N ⊆ V(D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices u,v ∈ N there is no monochromatic path between them and; (ii) for every vertex x ∈ V(D)-N there is a vertex y ∈ N such that there is an xy-monochromatic path. The closure of D, denoted by ℭ(D), is the m-colored multidigraph defined as follows: V(ℭ(D)) = V(D), A(ℭ(D)) = A(D)∪(u,v) with color i | there exists a uv-monochromatic path colored i contained in D. Notice that for any digraph D, ℭ (ℭ(D)) ≅ ℭ(D) and D has a kernel by monochromatic paths if and only if ℭ(D) has a kernel.
Let D be a finite m-colored digraph. Suppose that there is a partition C = C₁ ∪ C₂ of the set of colors of D such that every cycle in the subdigraph $D[C_i]$ spanned by the arcs with colors in $C_i$ is monochromatic. We show that if ℭ(D) does not contain neither rainbow triangles nor rainbow P₃ involving colors of both C₁ and C₂, then D has a kernel by monochromatic paths.
This result is a wide extension of the original result by Sands, Sauer and Woodrow that asserts: Every 2-colored digraph has a kernel by monochromatic paths (since in this case there are no rainbow triangles in ℭ(D)).
LA - eng
KW - kernel; kernel by monochromatic paths; monochromatic cycles; monochromatic paths
UR - http://eudml.org/doc/270813
ER -
References
top- [1] C. Berge, Graphs (North-Holland, Amsterdam, 1985).
- [2] P. Duchet, Graphes Noyau - Parfaits, Ann. Discrete Math. 9 (1980) 93-101, doi: 10.1016/S0167-5060(08)70041-4.
- [3] P. Duchet, Classical Perfect Graphs, An introduction with emphasis on triangulated and interval graphs, Ann. Discrete Math. 21 (1984) 67-96. Zbl0558.05038
- [4] P. Duchet and H. Meyniel, A note on kernel-critical graphs, Discrete Math. 33 (1981) 103-105, doi: 10.1016/0012-365X(81)90264-8. Zbl0456.05032
- [5] H. Galeana-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67-76, doi: 10.1016/0012-365X(84)90131-6. Zbl0529.05024
- [6] H. Galeana-Sánchez and V. Neumann-Lara, On kernel-perfect critical digraphs, Discrete Math. 59 (1986) 257-265, doi: 10.1016/0012-365X(86)90172-X. Zbl0593.05034
- [7] H. Galeana-Sánchez, On monochromatic paths and monochromatics cycles in edge coloured tournaments, Discrete Math. 156 (1996) 103-112, doi: 10.1016/0012-365X(95)00036-V.
- [8] H. Galeana-Sánchez, Kernels in edge-coloured digraphs, Discrete Math. 184 (1998) 87-99, doi: 10.1016/S0012-365X(97)00162-3. Zbl0958.05061
- [9] H. Galeana-Sánchez and J.J. Garcia-Ruvalcaba, Kernels in the closure of coloured digraphs, Discuss. Math. Graph Theory 20 (2000) 243-254, doi: 10.7151/dmgt.1123. Zbl0990.05059
- [10] H. Galeana-Sánchez and R. Rojas-Monroy, A counterexample to a conjecture on edge-coloured tournaments, Discrete Math. 282 (2004) 275-276, doi: 10.1016/j.disc.2003.11.015. Zbl1042.05039
- [11] S. Minggang, On monochromatic paths in m-coloured tournaments, J. Combin. Theory (B) 45 (1988) 108-111, doi: 10.1016/0095-8956(88)90059-7. Zbl0654.05033
- [12] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory (B) 33 (1982) 271-275, doi: 10.1016/0095-8956(82)90047-8. Zbl0488.05036
- [13] I. Włoch, On kernels by monochromatic paths in the corona of digraphs, Cent. Eur. J. Math. 6 (2008) 537-542, doi: 10.2478/s11533-008-0044-6. Zbl1152.05033
- [14] I. Włoch, On imp-sets and kernels by monochromatic paths in duplication, Ars Combin. 83 (2007) 93-99. Zbl1174.05114
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.