Cayley-Dickson Construction
Formalized Mathematics (2012)
- Volume: 20, Issue: 4, page 281-290
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topArtur Korniłowicz. "Cayley-Dickson Construction." Formalized Mathematics 20.4 (2012): 281-290. <http://eudml.org/doc/268274>.
@article{ArturKorniłowicz2012,
abstract = {Cayley-Dickson construction produces a sequence of normed algebras over real numbers. Its consequent applications result in complex numbers, quaternions, octonions, etc. In this paper we formalize the construction and prove its basic properties.},
author = {Artur Korniłowicz},
journal = {Formalized Mathematics},
language = {eng},
number = {4},
pages = {281-290},
title = {Cayley-Dickson Construction},
url = {http://eudml.org/doc/268274},
volume = {20},
year = {2012},
}
TY - JOUR
AU - Artur Korniłowicz
TI - Cayley-Dickson Construction
JO - Formalized Mathematics
PY - 2012
VL - 20
IS - 4
SP - 281
EP - 290
AB - Cayley-Dickson construction produces a sequence of normed algebras over real numbers. Its consequent applications result in complex numbers, quaternions, octonions, etc. In this paper we formalize the construction and prove its basic properties.
LA - eng
UR - http://eudml.org/doc/268274
ER -
References
top- [1] Grzegorz Bancerek. K¨onig’s theorem. Formalized Mathematics, 1(3):589-593, 1990.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [3] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
- [4] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [5] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [6] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [7] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- [9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [10] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
- [11] Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
- [12] Michał Muzalewski and Wojciech Skaba. From loops to abelian multiplicative groups with zero. Formalized Mathematics, 1(5):833-840, 1990.
- [13] Henryk Oryszczyszyn and Krzysztof Prazmowski. Real functions spaces. FormalizedMathematics, 1(3):555-561, 1990. Zbl0916.51004
- [14] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
- [15] Yasunari Shidama. The Banach algebra of bounded linear operators. Formalized Mathematics, 12(2):103-108, 2004.
- [16] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
- [17] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.
- [18] Andrzej Trybulec and Czesław Bylinski. Some properties of real numbers. FormalizedMathematics, 1(3):445-449, 1990.
- [19] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
- [20] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
- [21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [22] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.
- [23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.