Cayley-Dickson Construction

Artur Korniłowicz

Formalized Mathematics (2012)

  • Volume: 20, Issue: 4, page 281-290
  • ISSN: 1426-2630

Abstract

top
Cayley-Dickson construction produces a sequence of normed algebras over real numbers. Its consequent applications result in complex numbers, quaternions, octonions, etc. In this paper we formalize the construction and prove its basic properties.

How to cite

top

Artur Korniłowicz. "Cayley-Dickson Construction." Formalized Mathematics 20.4 (2012): 281-290. <http://eudml.org/doc/268274>.

@article{ArturKorniłowicz2012,
abstract = {Cayley-Dickson construction produces a sequence of normed algebras over real numbers. Its consequent applications result in complex numbers, quaternions, octonions, etc. In this paper we formalize the construction and prove its basic properties.},
author = {Artur Korniłowicz},
journal = {Formalized Mathematics},
language = {eng},
number = {4},
pages = {281-290},
title = {Cayley-Dickson Construction},
url = {http://eudml.org/doc/268274},
volume = {20},
year = {2012},
}

TY - JOUR
AU - Artur Korniłowicz
TI - Cayley-Dickson Construction
JO - Formalized Mathematics
PY - 2012
VL - 20
IS - 4
SP - 281
EP - 290
AB - Cayley-Dickson construction produces a sequence of normed algebras over real numbers. Its consequent applications result in complex numbers, quaternions, octonions, etc. In this paper we formalize the construction and prove its basic properties.
LA - eng
UR - http://eudml.org/doc/268274
ER -

References

top
  1. [1] Grzegorz Bancerek. K¨onig’s theorem. Formalized Mathematics, 1(3):589-593, 1990. 
  2. [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  3. [3] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990. 
  4. [4] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  5. [5] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  6. [6] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  7. [7] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  8. [8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990. 
  9. [9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991. 
  10. [10] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991. 
  11. [11] Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990. 
  12. [12] Michał Muzalewski and Wojciech Skaba. From loops to abelian multiplicative groups with zero. Formalized Mathematics, 1(5):833-840, 1990. 
  13. [13] Henryk Oryszczyszyn and Krzysztof Prazmowski. Real functions spaces. FormalizedMathematics, 1(3):555-561, 1990. Zbl0916.51004
  14. [14] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991. 
  15. [15] Yasunari Shidama. The Banach algebra of bounded linear operators. Formalized Mathematics, 12(2):103-108, 2004. 
  16. [16] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990. 
  17. [17] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003. 
  18. [18] Andrzej Trybulec and Czesław Bylinski. Some properties of real numbers. FormalizedMathematics, 1(3):445-449, 1990. 
  19. [19] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990. 
  20. [20] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. 
  21. [21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  22. [22] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001. 
  23. [23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.