Spacelike intersection curve of three spacelike hypersurfaces in E41

B. Uyar Düldül; M. Çalişkan

Annales UMCS, Mathematica (2013)

  • Volume: 67, Issue: 1, page 23-33
  • ISSN: 2083-7402

Abstract

top
In this paper, we compute the Frenet vectors and the curvatures of the spacelike intersection curve of three spacelike hypersurfaces given by their parametric equations in four-dimensional Minkowski space E41.

How to cite

top

B. Uyar Düldül, and M. Çalişkan. "Spacelike intersection curve of three spacelike hypersurfaces in E41." Annales UMCS, Mathematica 67.1 (2013): 23-33. <http://eudml.org/doc/268285>.

@article{B2013,
abstract = {In this paper, we compute the Frenet vectors and the curvatures of the spacelike intersection curve of three spacelike hypersurfaces given by their parametric equations in four-dimensional Minkowski space E41.},
author = {B. Uyar Düldül, M. Çalişkan},
journal = {Annales UMCS, Mathematica},
keywords = {Intersection curve; hypersurface; intersection curve},
language = {eng},
number = {1},
pages = {23-33},
title = {Spacelike intersection curve of three spacelike hypersurfaces in E41},
url = {http://eudml.org/doc/268285},
volume = {67},
year = {2013},
}

TY - JOUR
AU - B. Uyar Düldül
AU - M. Çalişkan
TI - Spacelike intersection curve of three spacelike hypersurfaces in E41
JO - Annales UMCS, Mathematica
PY - 2013
VL - 67
IS - 1
SP - 23
EP - 33
AB - In this paper, we compute the Frenet vectors and the curvatures of the spacelike intersection curve of three spacelike hypersurfaces given by their parametric equations in four-dimensional Minkowski space E41.
LA - eng
KW - Intersection curve; hypersurface; intersection curve
UR - http://eudml.org/doc/268285
ER -

References

top
  1. [1] Alessio, O., Geometria diferencial de curvas de interse¸c˜ao de duas superf´ıciesimpl´ıcitas, TEMA Tend. Mat. Apl. Comput. 7 (2) (2006), 169-178. 
  2. [2] Alessio, O., Guadalupe, I. V., Determination of a transversal intersection curve oftwo spacelike surfaces in Lorentz-Minkowski 3-Space L3, Hadronic Journal 30 (3) (2007), 315-342. Zbl1142.53304
  3. [3] Alessio, O., Differential geometry of intersection curves in R4 of three implicit surfaces, Comput. Aided Geom. Des. 26 (2009), 455-471.[WoS] Zbl1205.65064
  4. [4] D¨uld¨ul, M., On the intersection curve of three parametric hypersurfaces, Comput. Aided Geom. Des. 27 (2010), 118-127.[WoS] Zbl1210.65056
  5. [5] Goldman, R., Curvature formulas for implicit curves and surfaces, Comput. Aided Geom. Des. 22 (2005), 632-658. Zbl1084.53004
  6. [6] Hartmann, E., G2 interpolation and blending on surfaces, The Visual Computer 12 (1996), 181-192. Zbl0846.68099
  7. [7] Turgut, A., Spacelike and timelike ruled surfaces on the Minkowski 3-space R3 1, Ph. D. thesis, Ankara University, 1995. 
  8. [8] O’Neill, B., Semi Riemannian Geometry, Academic Press, New York-London, 1983. 
  9. [9] Walrave, J., Curves and surfaces in Minkowski space, Ph. D. thesis, K. U. Leuven. Fac. Science, Leuven, 1995. 
  10. [10] Williams, M. Z., Stein, F. M., A triple product of vectors in four-space, Math. Mag. 37 (4) (1964), 230-235.[Crossref] Zbl0123.14402
  11. [11] Willmore, T. J., An Introduction to Differential Geometry, Clarendon Press, Oxford, 1959. Zbl0086.14401
  12. [12] Ye, X., Maekawa T., Differential geometry of intersection curves of two surfaces, Comput. Aided Geom. Des. 16 (1999), 767-788. Zbl0997.65038
  13. [13] Yilmaz, S., Turgut, M., On the differential geometry of the curves in Minkowskispace-time I, Int. J. Contemp. Math. Sciences 3 (27) (2008), 1343-1349. Zbl1169.53312

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.