On Twin Edge Colorings of Graphs
Eric Andrews; Laars Helenius; Daniel Johnston; Jonathon VerWys; Ping Zhang
Discussiones Mathematicae Graph Theory (2014)
- Volume: 34, Issue: 3, page 613-627
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topEric Andrews, et al. "On Twin Edge Colorings of Graphs." Discussiones Mathematicae Graph Theory 34.3 (2014): 613-627. <http://eudml.org/doc/268302>.
@article{EricAndrews2014,
abstract = {A twin edge k-coloring of a graph G is a proper edge coloring of G with the elements of Zk so that the induced vertex coloring in which the color of a vertex v in G is the sum (in Zk) of the colors of the edges incident with v is a proper vertex coloring. The minimum k for which G has a twin edge k-coloring is called the twin chromatic index of G. Among the results presented are formulas for the twin chromatic index of each complete graph and each complete bipartite graph},
author = {Eric Andrews, Laars Helenius, Daniel Johnston, Jonathon VerWys, Ping Zhang},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {edge coloring; vertex coloring; factorization},
language = {eng},
number = {3},
pages = {613-627},
title = {On Twin Edge Colorings of Graphs},
url = {http://eudml.org/doc/268302},
volume = {34},
year = {2014},
}
TY - JOUR
AU - Eric Andrews
AU - Laars Helenius
AU - Daniel Johnston
AU - Jonathon VerWys
AU - Ping Zhang
TI - On Twin Edge Colorings of Graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2014
VL - 34
IS - 3
SP - 613
EP - 627
AB - A twin edge k-coloring of a graph G is a proper edge coloring of G with the elements of Zk so that the induced vertex coloring in which the color of a vertex v in G is the sum (in Zk) of the colors of the edges incident with v is a proper vertex coloring. The minimum k for which G has a twin edge k-coloring is called the twin chromatic index of G. Among the results presented are formulas for the twin chromatic index of each complete graph and each complete bipartite graph
LA - eng
KW - edge coloring; vertex coloring; factorization
UR - http://eudml.org/doc/268302
ER -
References
top- [1] L. Addario-Berry, R.E.L. Aldred, K. Dalal and B.A. Reed, Vertex colouring edge partitions, J. Combin. Theory (B) 94 (2005) 237-244. doi:10.1016/j.jctb.2005.01.001[Crossref] Zbl1074.05031
- [2] M. Anholcer, S. Cichacz and M. Milaniˇc, Group irregularity strength of connected graphs, J. Comb. Optim., to appear. doi:10.1007/s10878-013-9628-6[Crossref] Zbl1316.05078
- [3] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187-192.
- [4] G. Chartrand, L. Lesniak and P. Zhang, Graphs & Digraphs: 5th Edition (Chapman & Hall/CRC, Boca Raton, FL, 2010).
- [5] G. Chartrand and P. Zhang, Chromatic Graph Theory (Chapman & Hall/CRC, Boca Raton, FL, 2008). doi:10.1201/9781584888017[Crossref] Zbl1169.05001
- [6] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 16 (2013) #DS6. Zbl0953.05067
- [7] R.B. Gnana Jothi, Topics in Graph Theory, Ph.D. Thesis, Madurai Kamaraj University (1991).
- [8] S.W. Golomb, How to number a graph, in: Graph Theory and Computing R.C. Read (Ed.), (Academic Press, New York, 1972) 23-37. Zbl0293.05150
- [9] R. Jones, Modular and Graceful Edge Colorings of Graphs, Ph.D. Thesis, Western Michigan University (2011).
- [10] R. Jones, K. Kolasinski, F. Fujie-Okamoto and P. Zhang, On modular edge-graceful graphs, Graphs Combin. 29 (2013) 901-912. doi:10.1007/s00373-012-1147-1[Crossref] Zbl1268.05174
- [11] R. Jones, K. Kolasinski and P. Zhang, A proof of the modular edge-graceful trees conjecture, J. Combin. Math. Combin. Comput. 80 (2012) 445-455. Zbl1247.05207
- [12] M. Karoński, T. Luczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory (B) 91 (2004) 151-157. doi:10.1016/j.jctb.2003.12.001[Crossref] Zbl1042.05045
- [13] A. Rosa, On certain valuations of the vertices of a graph, in: Theory of Graphs, Proc. Internat. Symposium Rome 1966 (Gordon and Breach, New York 1967) 349-355.
- [14] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964) 25-30 (in Russian).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.