1-factorization of the Composition of Regular Graphs
As a general case of molecular graphs of benzenoid hydrocarbons, we study plane bipartite graphs with Kekulé structures (1-factors). A bipartite graph G is called elementary if G is connected and every edge belongs to a 1-factor of G. Some properties of the minimal and the maximal 1-factor of a plane elementary graph are given. A peripheral face f of a plane elementary graph is reducible, if the removal of the internal vertices and edges of the path that is the intersection of...
A complete 4-partite graph is called d-halvable if it can be decomposed into two isomorphic factors of diameter d. In the class of graphs with at most one odd part all d-halvable graphs are known. In the class of biregular graphs with four odd parts (i.e., the graphs and ) all d-halvable graphs are known as well, except for the graphs when d = 2 and n ≠ m. We prove that such graphs are 2-halvable iff n,m ≥ 3. We also determine a new class of non-halvable graphs with three or four different...
We characterize the class [...] L32 of intersection graphs of hypergraphs with rank at most 3 and multiplicity at most 2 by means of a finite list of forbidden induced subgraphs in the class of threshold graphs. We also give an O(n)-time algorithm for the recognition of graphs from [...] L32 in the class of threshold graphs, where n is the number of vertices of a tested graph.
The split graph on vertices is denoted by . A non-increasing sequence of nonnegative integers is said to be potentially -graphic if there exists a realization of containing as a subgraph. In this paper, we obtain a Havel-Hakimi type procedure and a simple sufficient condition for to be potentially -graphic. They are extensions of two theorems due to A. R. Rao (The clique number of a graph with given degree sequence, Graph Theory, Proc. Symp., Calcutta 1976, ISI Lect. Notes Series...
Let G = (V, E) be a simple graph of order n and i be an integer with i ≥ 1. The set X i ⊆ V(G) is called an i-packing if each two distinct vertices in X i are more than i apart. A packing colouring of G is a partition X = {X 1, X 2, …, X k} of V(G) such that each colour class X i is an i-packing. The minimum order k of a packing colouring is called the packing chromatic number of G, denoted by χρ(G). In this paper we show, using a theoretical proof, that if q = 4t, for some integer t ≥ 3, then 9...
The following result is proved: Let be a connected graph of order . Then for every matching in there exists a hamiltonian cycle of such that .
A polyomino graph P is a connected finite subgraph of the infinite plane grid such that each finite face is surrounded by a regular square of side length one and each edge belongs to at least one square. A dimer covering of P corresponds to a perfect matching. Different dimer coverings can interact via an alternating cycle (or square) with respect to them. A set of disjoint squares of P is a resonant set if P has a perfect matching M so that each one of those squares is M-alternating. In this paper,...
Let G be a graph of order n, and let a and b be two integers with 1 ≤ a ≤ b. Let h : E(G) → [0, 1] be a function. If a ≤ ∑e∋x h(e) ≤ b holds for any x ∈ V (G), then we call G[Fh] a fractional [a, b]-factor of G with indicator function h, where Fh = {e ∈ E(G) : h(e) > 0}. A graph G is fractional independent-set-deletable [a, b]-factor-critical (in short, fractional ID-[a, b]- factor-critical) if G − I has a fractional [a, b]-factor for every independent set I of G. In this paper, it is proved...