The Hahn-Banach Theorem surveyed

Gerard Buskes

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1993

Abstract

top
CONTENTS1. Prerequisites....................................................................................52. The history.......................................................................................63. Helly's Part.......................................................................................64. Banach's proof.................................................................................75. The shortest proof...........................................................................86. Luxemburg's proof.........................................................................107. Nachbin's proof..............................................................................118. Mazur's geometric Hahn-Banach Theorem....................................129. The complex numbers....................................................................1310. Ingleton's Theorem......................................................................1411. Constructive analysis and unique extensions...............................1612. The Axiom of Choice and the Ultrafilter Theorem.........................1813. The Mazur-Orlicz Theorem...........................................................2114. Simultaneous Hahn-Banach extensions.......................................2315. Injective Banach spaces and injective Banach lattices.................2416. The interpolation property............................................................2617. Invariant extensions.....................................................................2818. Locally convex spaces.................................................................2919. Non-commutative Hahn-Banach Theorems..................................3020. The strength of the Hahn-Banach Theorem.................................3121. Other categories..........................................................................32  21.1. Groups and semigroups..........................................................32  21.2. Vector lattices..........................................................................33  21.3. Algebras..................................................................................34  21.4. Distributive lattices and Boolean algebras..............................34  21.5. Module versions of the Hahn-Banach Theorem......................35References........................................................................................361991 Mathematics Subject Classification: Primary 46A22, 46-02; Secondary 04A25, 46M10, 46P05, 47B55.

How to cite

top

Gerard Buskes. The Hahn-Banach Theorem surveyed. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1993. <http://eudml.org/doc/268338>.

@book{GerardBuskes1993,
abstract = {CONTENTS1. Prerequisites....................................................................................52. The history.......................................................................................63. Helly's Part.......................................................................................64. Banach's proof.................................................................................75. The shortest proof...........................................................................86. Luxemburg's proof.........................................................................107. Nachbin's proof..............................................................................118. Mazur's geometric Hahn-Banach Theorem....................................129. The complex numbers....................................................................1310. Ingleton's Theorem......................................................................1411. Constructive analysis and unique extensions...............................1612. The Axiom of Choice and the Ultrafilter Theorem.........................1813. The Mazur-Orlicz Theorem...........................................................2114. Simultaneous Hahn-Banach extensions.......................................2315. Injective Banach spaces and injective Banach lattices.................2416. The interpolation property............................................................2617. Invariant extensions.....................................................................2818. Locally convex spaces.................................................................2919. Non-commutative Hahn-Banach Theorems..................................3020. The strength of the Hahn-Banach Theorem.................................3121. Other categories..........................................................................32  21.1. Groups and semigroups..........................................................32  21.2. Vector lattices..........................................................................33  21.3. Algebras..................................................................................34  21.4. Distributive lattices and Boolean algebras..............................34  21.5. Module versions of the Hahn-Banach Theorem......................35References........................................................................................361991 Mathematics Subject Classification: Primary 46A22, 46-02; Secondary 04A25, 46M10, 46P05, 47B55.},
author = {Gerard Buskes},
keywords = {Hahn-Banach Theorem; Mazur-Orlicz theorem; simultaneous Hahn-Banach extensions; interpolation property; injective Banach spaces; injective Banach lattices; invariant extensions; Banach limits; amenability property},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {The Hahn-Banach Theorem surveyed},
url = {http://eudml.org/doc/268338},
year = {1993},
}

TY - BOOK
AU - Gerard Buskes
TI - The Hahn-Banach Theorem surveyed
PY - 1993
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTS1. Prerequisites....................................................................................52. The history.......................................................................................63. Helly's Part.......................................................................................64. Banach's proof.................................................................................75. The shortest proof...........................................................................86. Luxemburg's proof.........................................................................107. Nachbin's proof..............................................................................118. Mazur's geometric Hahn-Banach Theorem....................................129. The complex numbers....................................................................1310. Ingleton's Theorem......................................................................1411. Constructive analysis and unique extensions...............................1612. The Axiom of Choice and the Ultrafilter Theorem.........................1813. The Mazur-Orlicz Theorem...........................................................2114. Simultaneous Hahn-Banach extensions.......................................2315. Injective Banach spaces and injective Banach lattices.................2416. The interpolation property............................................................2617. Invariant extensions.....................................................................2818. Locally convex spaces.................................................................2919. Non-commutative Hahn-Banach Theorems..................................3020. The strength of the Hahn-Banach Theorem.................................3121. Other categories..........................................................................32  21.1. Groups and semigroups..........................................................32  21.2. Vector lattices..........................................................................33  21.3. Algebras..................................................................................34  21.4. Distributive lattices and Boolean algebras..............................34  21.5. Module versions of the Hahn-Banach Theorem......................35References........................................................................................361991 Mathematics Subject Classification: Primary 46A22, 46-02; Secondary 04A25, 46M10, 46P05, 47B55.
LA - eng
KW - Hahn-Banach Theorem; Mazur-Orlicz theorem; simultaneous Hahn-Banach extensions; interpolation property; injective Banach spaces; injective Banach lattices; invariant extensions; Banach limits; amenability property
UR - http://eudml.org/doc/268338
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.