Page 1 Next

Displaying 1 – 20 of 60

Showing per page

A lifting theorem for locally convex subspaces of L 0

R. Faber (1995)

Studia Mathematica

We prove that for every closed locally convex subspace E of L 0 and for any continuous linear operator T from L 0 to L 0 / E there is a continuous linear operator S from L 0 to L 0 such that T = QS where Q is the quotient map from L 0 to L 0 / E .

An additivity formula for the strict global dimension of C(Ω)

Seytek Tabaldyev (2014)

Open Mathematics

Let A be a unital strict Banach algebra, and let K + be the one-point compactification of a discrete topological space K. Denote by the weak tensor product of the algebra A and C(K +), the algebra of continuous functions on K +. We prove that if K has sufficiently large cardinality (depending on A), then the strict global dimension is equal to .

Banach spaces

Laurent Gruson, Marius van der Put (1974)

Mémoires de la Société Mathématique de France

Bounded linear maps between (LF)-spaces.

Angela A. Albanese (2003)

RACSAM

Characterizations of pairs (E,F) of complete (LF)?spaces such that every continuous linear map from E to F maps a 0?neighbourhood of E into a bounded subset of F are given. The case of sequence (LF)?spaces is also considered. These results are similar to the ones due to D. Vogt in the case E and F are Fréchet spaces. The research continues work of J. Bonet, A. Galbis, S. Önal, T. Terzioglu and D. Vogt.

Extensions of certain real rank zero C * -algebras

Marius Dadarlat, Terry A. Loring (1994)

Annales de l'institut Fourier

G. Elliott extended the classification theory of A F -algebras to certain real rank zero inductive limits of subhomogeneous C * -algebras with one dimensional spectrum. We show that this class of C * -algebras is not closed under extensions. The relevant obstruction is related to the torsion subgroup of the K 1 -group. Perturbation and lifting results are provided for certain subhomogeneous C * -algebras.

Currently displaying 1 – 20 of 60

Page 1 Next