top
CONTENTS§1. Introduction................................................................................................................................... 5§2. Some classes of objects and morphisms in pro-categories..................................................... 5§3. Shape category.................................................................................................................................... 14§4. Deformation dimension..................................................................................................................... 16§5. Some properties of n-equivalences of pro- ...................................................................... 18§6. The Whitehead theorems in shape and pro-homotopy.............................................................. 26§7. Criteria for stability in shape and pro-homotopy........................................................................... 29§8. The Smale theorem in shape theory............................................................................................... 37References.................................................................................................................................................. 49
Jerzy Dydak. The Whitehead and the Smale theorems in shape theory. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1978. <http://eudml.org/doc/268349>.
@book{JerzyDydak1978, abstract = {CONTENTS§1. Introduction................................................................................................................................... 5§2. Some classes of objects and morphisms in pro-categories..................................................... 5§3. Shape category.................................................................................................................................... 14§4. Deformation dimension..................................................................................................................... 16§5. Some properties of n-equivalences of pro-$H_0$ ...................................................................... 18§6. The Whitehead theorems in shape and pro-homotopy.............................................................. 26§7. Criteria for stability in shape and pro-homotopy........................................................................... 29§8. The Smale theorem in shape theory............................................................................................... 37References.................................................................................................................................................. 49}, author = {Jerzy Dydak}, keywords = {whitehead theorem in shape theory; stability theorems in shape theory; smale theorem in shape theory; shape-equivalences; movable continua; homotopy equivalences}, language = {eng}, location = {Warszawa}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, title = {The Whitehead and the Smale theorems in shape theory}, url = {http://eudml.org/doc/268349}, year = {1978}, }
TY - BOOK AU - Jerzy Dydak TI - The Whitehead and the Smale theorems in shape theory PY - 1978 CY - Warszawa PB - Instytut Matematyczny Polskiej Akademi Nauk AB - CONTENTS§1. Introduction................................................................................................................................... 5§2. Some classes of objects and morphisms in pro-categories..................................................... 5§3. Shape category.................................................................................................................................... 14§4. Deformation dimension..................................................................................................................... 16§5. Some properties of n-equivalences of pro-$H_0$ ...................................................................... 18§6. The Whitehead theorems in shape and pro-homotopy.............................................................. 26§7. Criteria for stability in shape and pro-homotopy........................................................................... 29§8. The Smale theorem in shape theory............................................................................................... 37References.................................................................................................................................................. 49 LA - eng KW - whitehead theorem in shape theory; stability theorems in shape theory; smale theorem in shape theory; shape-equivalences; movable continua; homotopy equivalences UR - http://eudml.org/doc/268349 ER -