The Whitehead and the Smale theorems in shape theory

Jerzy Dydak

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1978

Abstract

top
CONTENTS§1. Introduction................................................................................................................................... 5§2. Some classes of objects and morphisms in pro-categories..................................................... 5§3. Shape category.................................................................................................................................... 14§4. Deformation dimension..................................................................................................................... 16§5. Some properties of n-equivalences of pro- ...................................................................... 18§6. The Whitehead theorems in shape and pro-homotopy.............................................................. 26§7. Criteria for stability in shape and pro-homotopy........................................................................... 29§8. The Smale theorem in shape theory............................................................................................... 37References.................................................................................................................................................. 49

How to cite

top

Jerzy Dydak. The Whitehead and the Smale theorems in shape theory. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1978. <http://eudml.org/doc/268349>.

@book{JerzyDydak1978,
abstract = {CONTENTS§1. Introduction................................................................................................................................... 5§2. Some classes of objects and morphisms in pro-categories..................................................... 5§3. Shape category.................................................................................................................................... 14§4. Deformation dimension..................................................................................................................... 16§5. Some properties of n-equivalences of pro-$H_0$ ...................................................................... 18§6. The Whitehead theorems in shape and pro-homotopy.............................................................. 26§7. Criteria for stability in shape and pro-homotopy........................................................................... 29§8. The Smale theorem in shape theory............................................................................................... 37References.................................................................................................................................................. 49},
author = {Jerzy Dydak},
keywords = {whitehead theorem in shape theory; stability theorems in shape theory; smale theorem in shape theory; shape-equivalences; movable continua; homotopy equivalences},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {The Whitehead and the Smale theorems in shape theory},
url = {http://eudml.org/doc/268349},
year = {1978},
}

TY - BOOK
AU - Jerzy Dydak
TI - The Whitehead and the Smale theorems in shape theory
PY - 1978
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTS§1. Introduction................................................................................................................................... 5§2. Some classes of objects and morphisms in pro-categories..................................................... 5§3. Shape category.................................................................................................................................... 14§4. Deformation dimension..................................................................................................................... 16§5. Some properties of n-equivalences of pro-$H_0$ ...................................................................... 18§6. The Whitehead theorems in shape and pro-homotopy.............................................................. 26§7. Criteria for stability in shape and pro-homotopy........................................................................... 29§8. The Smale theorem in shape theory............................................................................................... 37References.................................................................................................................................................. 49
LA - eng
KW - whitehead theorem in shape theory; stability theorems in shape theory; smale theorem in shape theory; shape-equivalences; movable continua; homotopy equivalences
UR - http://eudml.org/doc/268349
ER -

NotesEmbed ?

top

You must be logged in to post comments.