𝒞 p - E -movable and 𝒞 - E -calm compacta and their images

Zvonko Čerin

Compositio Mathematica (1982)

  • Volume: 45, Issue: 1, page 115-141
  • ISSN: 0010-437X

How to cite

top

Čerin, Zvonko. "$\mathcal {C}_p-E$-movable and $\mathcal {C}-E$-calm compacta and their images." Compositio Mathematica 45.1 (1982): 115-141. <http://eudml.org/doc/89529>.

@article{Čerin1982,
author = {Čerin, Zvonko},
journal = {Compositio Mathematica},
keywords = {fundamental e-sequence; refinable map; movability; E-homotopies; characterizations of ANR's and LCn-spaces; images of ANR's and AANR's; approximatively right invertible map; calmness},
language = {eng},
number = {1},
pages = {115-141},
publisher = {Martinus Nijhoff Publishers},
title = {$\mathcal \{C\}_p-E$-movable and $\mathcal \{C\}-E$-calm compacta and their images},
url = {http://eudml.org/doc/89529},
volume = {45},
year = {1982},
}

TY - JOUR
AU - Čerin, Zvonko
TI - $\mathcal {C}_p-E$-movable and $\mathcal {C}-E$-calm compacta and their images
JO - Compositio Mathematica
PY - 1982
PB - Martinus Nijhoff Publishers
VL - 45
IS - 1
SP - 115
EP - 141
LA - eng
KW - fundamental e-sequence; refinable map; movability; E-homotopies; characterizations of ANR's and LCn-spaces; images of ANR's and AANR's; approximatively right invertible map; calmness
UR - http://eudml.org/doc/89529
ER -

References

top
  1. [1] S.A. Bogatyĭ: Approximate and fundamental retracts. Mat. Sbornik93 (135) (1974) 90-102. Zbl0289.54025MR336695
  2. [2] K. Borsuk: Sur les retractés. Fund. Math.17 (1931) 152-170. Zbl0003.02701JFM57.0729.04
  3. [3] K. Borsuk: Theory of retracts, Monografie Matematyczne44, Warszawa1967. Zbl0153.52905MR216473
  4. [4] K. Borsuk: Theory of shape, Monografie Matematyczne59, Warszawa1975. Zbl0317.55006MR418088
  5. [5] Z. Čerin: Homotopy properties of locally compact spaces at infinity-calmness and smoothness. Pacific J. Math.79 (1978) 69-91. Zbl0405.55012MR526667
  6. [6] Z. Čerin, Cp-movably regular convergence, Fund. Math. (to appear). Zbl0463.54031MR621743
  7. [7] Z. Čerin: Strongly e-movable convergence and spaces of ANR's, (preprint). Zbl0527.54008MR730021
  8. [8] Z. Čerin: C-e-movable and (C, D)-e-tame compacta, (preprint). Zbl0519.54006MR699046
  9. [9] Z. Čerin: Surjective approximate absolute (neighborhood) retracts, Topology Proceedings, (to appear). Zbl0514.54006MR650477
  10. [10] Z. Čerin and A.P. Šostak: Some remarks on Borsuk's fundamental metric. Colloquia Math.23 (1978) 233-252. Zbl0455.54029
  11. [11] T.A. Chapman: On some applications of infinite-dimensional manifolds to the theory of shape. Fund. Math.76 (1972) 181-193. Zbl0262.55016MR320997
  12. [12] T.A. Chapman: Lectures on Hilbert cube manifolds. CBMS Regional Conferences Series in Mathematics, #28., Providence1976. Zbl0347.57005MR423357
  13. [13] T.A. Chapman and L.S. Siebenmann: Finding a boundary for a Hilbert cube manifold. Acta Math.137 (1976) 171-208. Zbl0361.57008MR425973
  14. [14] M.H. Clapp: On a generalization of absolute neighborhood retracts, Fund. Math.70 (1971) 117-130. Zbl0231.54012MR286081
  15. [15] J. Dydak: The Whitehead and Smale theorems in shape theory, Dissertationes Mathematicae 156, Warszawa1978. Zbl0405.55010MR522933
  16. [16] R. Edwards: Demension theory, Lecture Notes in Mathematics, #438, Springer, New York1975. Zbl0324.57004MR394678
  17. [17] J. Ford and J.W. Rogers:, Jr.: Refinable maps. Colloq. Math.39 (1978) 263-269. Zbl0417.54011MR522365
  18. [18] R. GEOGHEGAN (ed.): Open problems in infinite-dimensional topology. Topology Proceedings4 (1979) 287-338. Zbl0448.57001MR583711
  19. [19] W. Haver: Mappings between ANR's that are fine homotopy equivalences. Pacific J. Math.58 (1975) 457-462. Zbl0311.55006MR385865
  20. [20] S.T. Hu: Theory of retracts, Wayne State University Press, Detroit1965. Zbl0145.43003MR181977
  21. [21] G. Kozlowski: Factorization of certain maps up to homotopy. Proc. Amer. Math. Soc.21 (1969) 88-92. Zbl0184.26702MR238312
  22. [22] G. Kozlowski: Images of ANR's, (preprint). 
  23. [23] G. Kozlowski and J.W. Rogers, Jr.: Shape-theoretic properties involving refinable maps, (to appear). 
  24. [24] S. Mardešsić:Approximate polyhedra, resolutions of maps and shape fibrations, Fund. Math. (to appear). Zbl0411.54019MR643305
  25. [25] S. Mardešić and T.B. Rushing: Shape fibrations I. General Topology and its Appl.9 (1978) 193-215. Zbl0398.55011MR510901
  26. [26] H. Noguchi: A generalization of absolute neighborhood retracts. Kodai Math. Seminar Reports1 (1953) 20-23. Zbl0052.18803MR56279
  27. [27] P. Patten: Locally connected generalized absolute neighborhood retracts. Topology Proceedings3 (1978) 159-168. Zbl0426.54012MR540486
  28. [28] P. Patten: Refinable maps and generalized absolute neighborhood retracts (preprint). Zbl0493.54010MR667665
  29. [29] L.S. Siebenmann, Regular open neighborhoods. General Topology and its Appl.3 (1973) 51-61. Zbl0276.57003MR370604

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.