A characterization of representation-finite biserial algebras over a perfect field

Zygmunt Pogorzały

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1989

Abstract

top
CONTENTS1. Introduction.........................................................................................51. The structure of distributive biserial algebras.....................................72. Almost multiplicity-free modules........................................................153. One point extension..........................................................................194. Representation-finite biserial algebras with the (S)-condition...........315. Representation-finite biserial algebras ............................................41References...........................................................................................431980 Mathematics Subject Classification: Primary 16A46

How to cite

top

Zygmunt Pogorzały. A characterization of representation-finite biserial algebras over a perfect field. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1989. <http://eudml.org/doc/268354>.

@book{ZygmuntPogorzały1989,
abstract = {CONTENTS1. Introduction.........................................................................................51. The structure of distributive biserial algebras.....................................72. Almost multiplicity-free modules........................................................153. One point extension..........................................................................194. Representation-finite biserial algebras with the (S)-condition...........315. Representation-finite biserial algebras ............................................41References...........................................................................................431980 Mathematics Subject Classification: Primary 16A46},
author = {Zygmunt Pogorzały},
keywords = {representation-finite algebras over perfect fields; almost multiplicity- free indecomposables; finite dimensional K-algebras; Auslander-Reiten sequence; local modules; primitive V-sequence; uniserial submodules},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {A characterization of representation-finite biserial algebras over a perfect field},
url = {http://eudml.org/doc/268354},
year = {1989},
}

TY - BOOK
AU - Zygmunt Pogorzały
TI - A characterization of representation-finite biserial algebras over a perfect field
PY - 1989
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTS1. Introduction.........................................................................................51. The structure of distributive biserial algebras.....................................72. Almost multiplicity-free modules........................................................153. One point extension..........................................................................194. Representation-finite biserial algebras with the (S)-condition...........315. Representation-finite biserial algebras ............................................41References...........................................................................................431980 Mathematics Subject Classification: Primary 16A46
LA - eng
KW - representation-finite algebras over perfect fields; almost multiplicity- free indecomposables; finite dimensional K-algebras; Auslander-Reiten sequence; local modules; primitive V-sequence; uniserial submodules
UR - http://eudml.org/doc/268354
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.