A characterization of representation-finite biserial algebras over a perfect field
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1989
Access Full Book
topAbstract
topHow to cite
topZygmunt Pogorzały. A characterization of representation-finite biserial algebras over a perfect field. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1989. <http://eudml.org/doc/268354>.
@book{ZygmuntPogorzały1989,
abstract = {CONTENTS1. Introduction.........................................................................................51. The structure of distributive biserial algebras.....................................72. Almost multiplicity-free modules........................................................153. One point extension..........................................................................194. Representation-finite biserial algebras with the (S)-condition...........315. Representation-finite biserial algebras ............................................41References...........................................................................................431980 Mathematics Subject Classification: Primary 16A46},
author = {Zygmunt Pogorzały},
keywords = {representation-finite algebras over perfect fields; almost multiplicity- free indecomposables; finite dimensional K-algebras; Auslander-Reiten sequence; local modules; primitive V-sequence; uniserial submodules},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {A characterization of representation-finite biserial algebras over a perfect field},
url = {http://eudml.org/doc/268354},
year = {1989},
}
TY - BOOK
AU - Zygmunt Pogorzały
TI - A characterization of representation-finite biserial algebras over a perfect field
PY - 1989
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTS1. Introduction.........................................................................................51. The structure of distributive biserial algebras.....................................72. Almost multiplicity-free modules........................................................153. One point extension..........................................................................194. Representation-finite biserial algebras with the (S)-condition...........315. Representation-finite biserial algebras ............................................41References...........................................................................................431980 Mathematics Subject Classification: Primary 16A46
LA - eng
KW - representation-finite algebras over perfect fields; almost multiplicity- free indecomposables; finite dimensional K-algebras; Auslander-Reiten sequence; local modules; primitive V-sequence; uniserial submodules
UR - http://eudml.org/doc/268354
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.