Simplicial T-complexes and crossed complexes: a non-abelian version of a theorem of Dold and Kan

N. Ashley

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1988

Abstract

top
CONTENTSPreface (by Ronald Brown)..................................................................5Introduction..........................................................................................7Preliminaries........................................................................................91. T-complexes and crossed complexes.............................................101.1. A groupoid structure for a T-complex..........................................121.2. The isomorphism theorem for a T-complex.................................161.3. Certain abelian groups associated to a T-complex......................201.4. The homomorphism δ..................................................................221.5. The groupoid action....................................................................241.6. The interchange law between the isomorphisms h and φ............251.7. The crossed complex associated to a T-complex........................271.8. Some technical results................................................................311.9. The isomorphism theorem for T-complexes.................................331.10. The T-complex addition lemma..................................................351.11. A functor from crossed complexes to T-complexes....................361.12. The equivalence of categories..................................................402. Special filtered Kan complexes.......................................................412.1. Introduction.................................................................................412.2. Definitions and examples............................................................422.3. The crossed complex associated to the T-complex ϱ(X).............493. Simplicial groups............................................................................493.1. Group T-complexes.....................................................................503.2. Special simplicial groups over a groupoid...................................533.3. A filtration of a simplicial group....................................................544. Miscellaneous................................................................................54References........................................................................................58

How to cite

top

N. Ashley. Simplicial T-complexes and crossed complexes: a non-abelian version of a theorem of Dold and Kan. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1988. <http://eudml.org/doc/268359>.

@book{N1988,
abstract = {CONTENTSPreface (by Ronald Brown)..................................................................5Introduction..........................................................................................7Preliminaries........................................................................................91. T-complexes and crossed complexes.............................................101.1. A groupoid structure for a T-complex..........................................121.2. The isomorphism theorem for a T-complex.................................161.3. Certain abelian groups associated to a T-complex......................201.4. The homomorphism δ..................................................................221.5. The groupoid action....................................................................241.6. The interchange law between the isomorphisms h and φ............251.7. The crossed complex associated to a T-complex........................271.8. Some technical results................................................................311.9. The isomorphism theorem for T-complexes.................................331.10. The T-complex addition lemma..................................................351.11. A functor from crossed complexes to T-complexes....................361.12. The equivalence of categories..................................................402. Special filtered Kan complexes.......................................................412.1. Introduction.................................................................................412.2. Definitions and examples............................................................422.3. The crossed complex associated to the T-complex ϱ(X).............493. Simplicial groups............................................................................493.1. Group T-complexes.....................................................................503.2. Special simplicial groups over a groupoid...................................533.3. A filtration of a simplicial group....................................................544. Miscellaneous................................................................................54References........................................................................................58},
author = {N. Ashley},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Simplicial T-complexes and crossed complexes: a non-abelian version of a theorem of Dold and Kan},
url = {http://eudml.org/doc/268359},
year = {1988},
}

TY - BOOK
AU - N. Ashley
TI - Simplicial T-complexes and crossed complexes: a non-abelian version of a theorem of Dold and Kan
PY - 1988
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSPreface (by Ronald Brown)..................................................................5Introduction..........................................................................................7Preliminaries........................................................................................91. T-complexes and crossed complexes.............................................101.1. A groupoid structure for a T-complex..........................................121.2. The isomorphism theorem for a T-complex.................................161.3. Certain abelian groups associated to a T-complex......................201.4. The homomorphism δ..................................................................221.5. The groupoid action....................................................................241.6. The interchange law between the isomorphisms h and φ............251.7. The crossed complex associated to a T-complex........................271.8. Some technical results................................................................311.9. The isomorphism theorem for T-complexes.................................331.10. The T-complex addition lemma..................................................351.11. A functor from crossed complexes to T-complexes....................361.12. The equivalence of categories..................................................402. Special filtered Kan complexes.......................................................412.1. Introduction.................................................................................412.2. Definitions and examples............................................................422.3. The crossed complex associated to the T-complex ϱ(X).............493. Simplicial groups............................................................................493.1. Group T-complexes.....................................................................503.2. Special simplicial groups over a groupoid...................................533.3. A filtration of a simplicial group....................................................544. Miscellaneous................................................................................54References........................................................................................58
LA - eng
UR - http://eudml.org/doc/268359
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.