Differentiable structure in a conjugate vector bundle of infinite dimension

Paweł Urbański

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1974

Abstract

top
CONTENTSIntroductionChapter I. Differentiation in Cartesian products of normed and infrabarrelled of DF-type spaces§ 1. Preliminaries......................................................................................................................................................................... 7§ 2. Fundamental definitions...................................................................................................................................................... 7§ 3. Certain properties of mappings in some l.e.v-.v. space................................................................................................ 9§ 4. Mean value theorems .......................................................................................................................................................... 11§ 5. Differentiation of a superposition....................................................................................................................................... 14§ 6. Higher order derivatives....................................................................................................................................................... 15Chapter II. Differential calculus in Marinescu spaces§ 1. Basic concepts and definitions.......................................................................................................................................... 16§ 2. Differentiation in Marinescu spaces.................................................................................................................................. 17§ 3. Differential calculus in bornological Von-Neumann spaces........................................................................................ 21Chapter III. Differentiable structure in a conjugate bundle§ 1. Non-banachian differentiable manifolds.......................................................................................................................... 24§ 2. Infinite-dimensional vector bundles.................................................................................................................................. 25§ 3. Conjugate bundle......................................................................................................................................................................... 26Chapter IV. The bundle of section-distributions§ 1. The bundle of section-distributions................................................................................................................................... 29§ 2. An application in the field theory......................................................................................................................................... 31§ 3. Example of a Lagrangian.................................................................................................................................................... 32

How to cite

top

Paweł Urbański. Differentiable structure in a conjugate vector bundle of infinite dimension. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1974. <http://eudml.org/doc/268372>.

@book{PawełUrbański1974,
abstract = {CONTENTSIntroductionChapter I. Differentiation in Cartesian products of normed and infrabarrelled of DF-type spaces§ 1. Preliminaries......................................................................................................................................................................... 7§ 2. Fundamental definitions...................................................................................................................................................... 7§ 3. Certain properties of mappings in some l.e.v-.v. space................................................................................................ 9§ 4. Mean value theorems .......................................................................................................................................................... 11§ 5. Differentiation of a superposition....................................................................................................................................... 14§ 6. Higher order derivatives....................................................................................................................................................... 15Chapter II. Differential calculus in Marinescu spaces§ 1. Basic concepts and definitions.......................................................................................................................................... 16§ 2. Differentiation in Marinescu spaces.................................................................................................................................. 17§ 3. Differential calculus in bornological Von-Neumann spaces........................................................................................ 21Chapter III. Differentiable structure in a conjugate bundle§ 1. Non-banachian differentiable manifolds.......................................................................................................................... 24§ 2. Infinite-dimensional vector bundles.................................................................................................................................. 25§ 3. Conjugate bundle......................................................................................................................................................................... 26Chapter IV. The bundle of section-distributions§ 1. The bundle of section-distributions................................................................................................................................... 29§ 2. An application in the field theory......................................................................................................................................... 31§ 3. Example of a Lagrangian.................................................................................................................................................... 32},
author = {Paweł Urbański},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Differentiable structure in a conjugate vector bundle of infinite dimension},
url = {http://eudml.org/doc/268372},
year = {1974},
}

TY - BOOK
AU - Paweł Urbański
TI - Differentiable structure in a conjugate vector bundle of infinite dimension
PY - 1974
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroductionChapter I. Differentiation in Cartesian products of normed and infrabarrelled of DF-type spaces§ 1. Preliminaries......................................................................................................................................................................... 7§ 2. Fundamental definitions...................................................................................................................................................... 7§ 3. Certain properties of mappings in some l.e.v-.v. space................................................................................................ 9§ 4. Mean value theorems .......................................................................................................................................................... 11§ 5. Differentiation of a superposition....................................................................................................................................... 14§ 6. Higher order derivatives....................................................................................................................................................... 15Chapter II. Differential calculus in Marinescu spaces§ 1. Basic concepts and definitions.......................................................................................................................................... 16§ 2. Differentiation in Marinescu spaces.................................................................................................................................. 17§ 3. Differential calculus in bornological Von-Neumann spaces........................................................................................ 21Chapter III. Differentiable structure in a conjugate bundle§ 1. Non-banachian differentiable manifolds.......................................................................................................................... 24§ 2. Infinite-dimensional vector bundles.................................................................................................................................. 25§ 3. Conjugate bundle......................................................................................................................................................................... 26Chapter IV. The bundle of section-distributions§ 1. The bundle of section-distributions................................................................................................................................... 29§ 2. An application in the field theory......................................................................................................................................... 31§ 3. Example of a Lagrangian.................................................................................................................................................... 32
LA - eng
UR - http://eudml.org/doc/268372
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.