Differentiable structure in a conjugate vector bundle of infinite dimension
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1974
Access Full Book
topAbstract
topHow to cite
topPaweł Urbański. Differentiable structure in a conjugate vector bundle of infinite dimension. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1974. <http://eudml.org/doc/268372>.
@book{PawełUrbański1974,
abstract = {CONTENTSIntroductionChapter I. Differentiation in Cartesian products of normed and infrabarrelled of DF-type spaces§ 1. Preliminaries......................................................................................................................................................................... 7§ 2. Fundamental definitions...................................................................................................................................................... 7§ 3. Certain properties of mappings in some l.e.v-.v. space................................................................................................ 9§ 4. Mean value theorems .......................................................................................................................................................... 11§ 5. Differentiation of a superposition....................................................................................................................................... 14§ 6. Higher order derivatives....................................................................................................................................................... 15Chapter II. Differential calculus in Marinescu spaces§ 1. Basic concepts and definitions.......................................................................................................................................... 16§ 2. Differentiation in Marinescu spaces.................................................................................................................................. 17§ 3. Differential calculus in bornological Von-Neumann spaces........................................................................................ 21Chapter III. Differentiable structure in a conjugate bundle§ 1. Non-banachian differentiable manifolds.......................................................................................................................... 24§ 2. Infinite-dimensional vector bundles.................................................................................................................................. 25§ 3. Conjugate bundle......................................................................................................................................................................... 26Chapter IV. The bundle of section-distributions§ 1. The bundle of section-distributions................................................................................................................................... 29§ 2. An application in the field theory......................................................................................................................................... 31§ 3. Example of a Lagrangian.................................................................................................................................................... 32},
author = {Paweł Urbański},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Differentiable structure in a conjugate vector bundle of infinite dimension},
url = {http://eudml.org/doc/268372},
year = {1974},
}
TY - BOOK
AU - Paweł Urbański
TI - Differentiable structure in a conjugate vector bundle of infinite dimension
PY - 1974
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroductionChapter I. Differentiation in Cartesian products of normed and infrabarrelled of DF-type spaces§ 1. Preliminaries......................................................................................................................................................................... 7§ 2. Fundamental definitions...................................................................................................................................................... 7§ 3. Certain properties of mappings in some l.e.v-.v. space................................................................................................ 9§ 4. Mean value theorems .......................................................................................................................................................... 11§ 5. Differentiation of a superposition....................................................................................................................................... 14§ 6. Higher order derivatives....................................................................................................................................................... 15Chapter II. Differential calculus in Marinescu spaces§ 1. Basic concepts and definitions.......................................................................................................................................... 16§ 2. Differentiation in Marinescu spaces.................................................................................................................................. 17§ 3. Differential calculus in bornological Von-Neumann spaces........................................................................................ 21Chapter III. Differentiable structure in a conjugate bundle§ 1. Non-banachian differentiable manifolds.......................................................................................................................... 24§ 2. Infinite-dimensional vector bundles.................................................................................................................................. 25§ 3. Conjugate bundle......................................................................................................................................................................... 26Chapter IV. The bundle of section-distributions§ 1. The bundle of section-distributions................................................................................................................................... 29§ 2. An application in the field theory......................................................................................................................................... 31§ 3. Example of a Lagrangian.................................................................................................................................................... 32
LA - eng
UR - http://eudml.org/doc/268372
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.