The elementary theory of distributions (I)

Jan Mikusiński; Roman Sikorski

  • 1957

Abstract

top
CONTENTS Introduction........................................................................................................... 3 § 1. The abstraction principle............................................................................... 4 § 2. Fundamental sequences of continuous functions......................................... 5 § 3. The definition of distributions........................................................................ 9 § 4. Distributions as a generalization of the notion of functions........................... 11 § 5. Algebraic operations on distributions............................................................ 12 § 6. Derivation of distributions.............................................................................. 13 § 7. The definition of distributions by derivatives................................................. 16 § 8. Locally integrable functions........................................................................... 17 § 9. Sequences and series of distributions.......................................................... 19 § 10. Distributions depending on a continuous parameter................................... 23 § 11. Multiplication of distributions by functions.................................................... 25 § 12. Substitutions................................................................................................ 27 § 13. Equality of distributions in intervals............................................................. 30 § 14. Functions with poles.................................................................................... 32 § 15. Derivative as the limit of a difference quotient............................................. 33 § 16. The value of a distribution at a point............................................................ 35 § 17. Existence theorems for values of distributions............................................. 37 § 18. The value of a distribution at infinity............................................................. 41 § 19. The integral of a distribution......................................................................... 42 § 20. Periodic distributions.................................................................................... 46 § 21. Distributions of infinite order......................................................................... 51 References............................................................................................................ 54

How to cite

top

Jan Mikusiński, and Roman Sikorski. The elementary theory of distributions (I). 1957. <http://eudml.org/doc/268381>.

@book{JanMikusiński1957,
abstract = {CONTENTS Introduction........................................................................................................... 3 § 1. The abstraction principle............................................................................... 4 § 2. Fundamental sequences of continuous functions......................................... 5 § 3. The definition of distributions........................................................................ 9 § 4. Distributions as a generalization of the notion of functions........................... 11 § 5. Algebraic operations on distributions............................................................ 12 § 6. Derivation of distributions.............................................................................. 13 § 7. The definition of distributions by derivatives................................................. 16 § 8. Locally integrable functions........................................................................... 17 § 9. Sequences and series of distributions.......................................................... 19 § 10. Distributions depending on a continuous parameter................................... 23 § 11. Multiplication of distributions by functions.................................................... 25 § 12. Substitutions................................................................................................ 27 § 13. Equality of distributions in intervals............................................................. 30 § 14. Functions with poles.................................................................................... 32 § 15. Derivative as the limit of a difference quotient............................................. 33 § 16. The value of a distribution at a point............................................................ 35 § 17. Existence theorems for values of distributions............................................. 37 § 18. The value of a distribution at infinity............................................................. 41 § 19. The integral of a distribution......................................................................... 42 § 20. Periodic distributions.................................................................................... 46 § 21. Distributions of infinite order......................................................................... 51 References............................................................................................................ 54},
author = {Jan Mikusiński, Roman Sikorski},
keywords = {Functional Analysis; Abstract Spaces},
language = {eng},
title = {The elementary theory of distributions (I)},
url = {http://eudml.org/doc/268381},
year = {1957},
}

TY - BOOK
AU - Jan Mikusiński
AU - Roman Sikorski
TI - The elementary theory of distributions (I)
PY - 1957
AB - CONTENTS Introduction........................................................................................................... 3 § 1. The abstraction principle............................................................................... 4 § 2. Fundamental sequences of continuous functions......................................... 5 § 3. The definition of distributions........................................................................ 9 § 4. Distributions as a generalization of the notion of functions........................... 11 § 5. Algebraic operations on distributions............................................................ 12 § 6. Derivation of distributions.............................................................................. 13 § 7. The definition of distributions by derivatives................................................. 16 § 8. Locally integrable functions........................................................................... 17 § 9. Sequences and series of distributions.......................................................... 19 § 10. Distributions depending on a continuous parameter................................... 23 § 11. Multiplication of distributions by functions.................................................... 25 § 12. Substitutions................................................................................................ 27 § 13. Equality of distributions in intervals............................................................. 30 § 14. Functions with poles.................................................................................... 32 § 15. Derivative as the limit of a difference quotient............................................. 33 § 16. The value of a distribution at a point............................................................ 35 § 17. Existence theorems for values of distributions............................................. 37 § 18. The value of a distribution at infinity............................................................. 41 § 19. The integral of a distribution......................................................................... 42 § 20. Periodic distributions.................................................................................... 46 § 21. Distributions of infinite order......................................................................... 51 References............................................................................................................ 54
LA - eng
KW - Functional Analysis; Abstract Spaces
UR - http://eudml.org/doc/268381
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.