Integrals and Banach spaces for finite order distributions

Erik Talvila

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 1, page 77-104
  • ISSN: 0011-4642

Abstract

top
Let c denote the real-valued functions continuous on the extended real line and vanishing at - . Let r denote the functions that are left continuous, have a right limit at each point and vanish at - . Define 𝒜 c n to be the space of tempered distributions that are the n th distributional derivative of a unique function in c . Similarly with 𝒜 r n from r . A type of integral is defined on distributions in 𝒜 c n and 𝒜 r n . The multipliers are iterated integrals of functions of bounded variation. For each n , the spaces 𝒜 c n and 𝒜 r n are Banach spaces, Banach lattices and Banach algebras isometrically isomorphic to c and r , respectively. Under the ordering in this lattice, if a distribution is integrable then its absolute value is integrable. The dual space is isometrically isomorphic to the functions of bounded variation. The space 𝒜 c 1 is the completion of the L 1 functions in the Alexiewicz norm. The space 𝒜 r 1 contains all finite signed Borel measures. Many of the usual properties of integrals hold: Hölder inequality, second mean value theorem, continuity in norm, linear change of variables, a convergence theorem.

How to cite

top

Talvila, Erik. "Integrals and Banach spaces for finite order distributions." Czechoslovak Mathematical Journal 62.1 (2012): 77-104. <http://eudml.org/doc/246963>.

@article{Talvila2012,
abstract = {Let $\mathcal \{B\}_c$ denote the real-valued functions continuous on the extended real line and vanishing at $-\infty $. Let $\mathcal \{B\}_r$ denote the functions that are left continuous, have a right limit at each point and vanish at $-\infty $. Define $\mathcal \{A\}^n_c$ to be the space of tempered distributions that are the $n$th distributional derivative of a unique function in $\mathcal \{B\}_c$. Similarly with $\mathcal \{A\}^n_r$ from $\mathcal \{B\}_r$. A type of integral is defined on distributions in $\mathcal \{A\}^n_c$ and $\mathcal \{A\}^n_r$. The multipliers are iterated integrals of functions of bounded variation. For each $n\in \mathbb \{N\}$, the spaces $\mathcal \{A\}^n_c$ and $\mathcal \{A\}^n_r$ are Banach spaces, Banach lattices and Banach algebras isometrically isomorphic to $\mathcal \{B\}_c$ and $\mathcal \{B\}_r$, respectively. Under the ordering in this lattice, if a distribution is integrable then its absolute value is integrable. The dual space is isometrically isomorphic to the functions of bounded variation. The space $\mathcal \{A\}_c^1$ is the completion of the $L^1$ functions in the Alexiewicz norm. The space $\mathcal \{A\}_r^1$ contains all finite signed Borel measures. Many of the usual properties of integrals hold: Hölder inequality, second mean value theorem, continuity in norm, linear change of variables, a convergence theorem.},
author = {Talvila, Erik},
journal = {Czechoslovak Mathematical Journal},
keywords = {regulated function; regulated primitive integral; Banach space; Banach lattice; Banach algebra; Schwartz distribution; generalized function; distributional Denjoy integral; continuous primitive integral; Henstock-Kurzweil integral; primitive; regulated function; regulated primitive integral; Banach lattice; distributional Denjoy integral; continuous primitive integral; Henstock-Kurzweil integral},
language = {eng},
number = {1},
pages = {77-104},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Integrals and Banach spaces for finite order distributions},
url = {http://eudml.org/doc/246963},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Talvila, Erik
TI - Integrals and Banach spaces for finite order distributions
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 77
EP - 104
AB - Let $\mathcal {B}_c$ denote the real-valued functions continuous on the extended real line and vanishing at $-\infty $. Let $\mathcal {B}_r$ denote the functions that are left continuous, have a right limit at each point and vanish at $-\infty $. Define $\mathcal {A}^n_c$ to be the space of tempered distributions that are the $n$th distributional derivative of a unique function in $\mathcal {B}_c$. Similarly with $\mathcal {A}^n_r$ from $\mathcal {B}_r$. A type of integral is defined on distributions in $\mathcal {A}^n_c$ and $\mathcal {A}^n_r$. The multipliers are iterated integrals of functions of bounded variation. For each $n\in \mathbb {N}$, the spaces $\mathcal {A}^n_c$ and $\mathcal {A}^n_r$ are Banach spaces, Banach lattices and Banach algebras isometrically isomorphic to $\mathcal {B}_c$ and $\mathcal {B}_r$, respectively. Under the ordering in this lattice, if a distribution is integrable then its absolute value is integrable. The dual space is isometrically isomorphic to the functions of bounded variation. The space $\mathcal {A}_c^1$ is the completion of the $L^1$ functions in the Alexiewicz norm. The space $\mathcal {A}_r^1$ contains all finite signed Borel measures. Many of the usual properties of integrals hold: Hölder inequality, second mean value theorem, continuity in norm, linear change of variables, a convergence theorem.
LA - eng
KW - regulated function; regulated primitive integral; Banach space; Banach lattice; Banach algebra; Schwartz distribution; generalized function; distributional Denjoy integral; continuous primitive integral; Henstock-Kurzweil integral; primitive; regulated function; regulated primitive integral; Banach lattice; distributional Denjoy integral; continuous primitive integral; Henstock-Kurzweil integral
UR - http://eudml.org/doc/246963
ER -

References

top
  1. Alexiewicz, A., 10.4064/cm-1-4-289-293, Colloq. Math. 1 (1948), 289-293. (1948) Zbl0037.32302MR0030120DOI10.4064/cm-1-4-289-293
  2. Aliprantis, C. D., Border, K. C, Infinite Dimensional Analysis. A Hitchhiker's Guide, Springer, Berlin (2006). (2006) Zbl1156.46001MR2378491
  3. Ambrosio, L., Fusco, N., Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs. Oxford: Clarendon Press (2000). (2000) Zbl0957.49001MR1857292
  4. Axler, S., Bourdon, P., Ramey, W., Harmonic Function Theory, Springer, New York (2001). (2001) Zbl0959.31001MR1805196
  5. Burkill, J. C., 10.1017/S030500410003293X, Proc. Camb. Philos. Soc. 53 (1957), 821-824. (1957) Zbl0081.11303MR0094703DOI10.1017/S030500410003293X
  6. Čelidze, V. G., Džvaršeĭšvili, A. G., The Theory of the Denjoy Integral and Some Applications. Transl. from the Russian by P. S. Bullen, World Scientific, Singapore (1989). (1989) MR1036270
  7. Das, A. G., Sahu, G., An equivalent Denjoy type definition of the generalized Henstock Stieltjes integral, Bull. Inst. Math., Acad. Sin. 30 (2002), 27-49. (2002) Zbl1007.26004MR1891364
  8. Dunford, N., Schwartz, J. T., Linear Operators, Part I: General theory. With the assistance of William G. Bade and Robert G. Bartle. Repr. of the orig., publ. 1959 by John Wiley & Sons Ltd., Paperback ed. New York etc.: John Wiley & Sons Ltd. xiv (1988). (1988) Zbl0635.47003MR1009162
  9. Fleming, R. J., Jamison, J. E., Isometries on Banach Spaces: Function spaces, Chapman and Hall, Boca Raton (2003). (2003) Zbl1011.46001MR1957004
  10. Folland, G. B., Real Analysis. Modern Techniques and Their Applications. 2nd ed, Wiley, New York (1999). (1999) Zbl0924.28001MR1681462
  11. Fraňkova, D., Regulated functions, Math. Bohem. 116 (1991), 20-59. (1991) Zbl0724.26009MR1100424
  12. Friedlander, F. G., Joshi, M., Introduction to the Theory of Distributions, Cambridge etc.: Cambridge University Press. III (1982). (1982) MR0779092
  13. Gordon, R. A., The Integrals of Lebesgue, Denjoy, Perron, and Henstock, American Mathematical Society, Providence (1994). (1994) Zbl0807.26004MR1288751
  14. Kaniuth, E., A Course in Commutative Banach Algebras, Springer, New York (2009). (2009) Zbl1190.46001MR2458901
  15. Kannan, R., Krueger, C. K., Advanced Analysis on the Real Line, Springer, New York (1996). (1996) Zbl0855.26001MR1390758
  16. Lee, P. Y., Výborný, R., The Integral: An Easy Approach after Kurzweil and Henstock, Cambridge University Press, Cambridge (2000). (2000) MR1756319
  17. Lane, S. Mac, Birkhoff, G., Algebra, Macmillan, New York (1979). (1979) MR0524398
  18. McLeod, R. M., The Generalized Riemann Integral, The Mathematical Association of America, Washington (1980). (1980) Zbl0486.26005MR0588510
  19. Mikusiński, J., Sikorski, R., The elementary theory of distributions. I, Rozprawy Mat. 12 (1957), 52 pp. (1957) Zbl0078.11101MR0094702
  20. Musielak, J. A., A note on integrals of distributions, Pr. Mat. 8 (1963), 1-7. (1963) Zbl0202.40301MR0184080
  21. Oberguggenberger, M., Multiplication of Distributions and Applications to Partial Differential Equations, Longman Scientific and Technical, Harlow (1992). (1992) Zbl0818.46036MR1187755
  22. Russell, A. M., 10.1017/S1446788700012015, J. Aust. Math. Soc., Ser. A 26 (1978), 501-510. (1978) Zbl0398.26011MR0520103DOI10.1017/S1446788700012015
  23. Schwartz, L., Thèorie des Distributions. Nouvelle ed., entie`rement corr., refondue et augm, Hermann, Paris (1978), French. (1978) MR0209834
  24. Sikorski, R., 10.4064/sm-20-2-119-139, Stud. Math. 20 (1961), 119-139. (1961) Zbl0103.09102MR0126714DOI10.4064/sm-20-2-119-139
  25. Talvila, E., 10.2307/44154045, Real Anal. Exch. 25 (1999/2000), 907-918. (1999) MR1778542DOI10.2307/44154045
  26. Talvila, E., 10.14321/realanalexch.33.1.0051, Real Anal. Exch. 33 (2008), 51-82. (2008) Zbl1154.26011MR2402863DOI10.14321/realanalexch.33.1.0051
  27. Talvila, E., Convolutions with the continuous primitive integral, Abstr. Appl. Anal. 2009 (2009), 18 pp. (2009) Zbl1192.46039MR2559282
  28. Talvila, E., 10.1215/ijm/1290435346, Ill. J. Math. 53 (2009), 1187-1219. (2009) Zbl1207.26018MR2741185DOI10.1215/ijm/1290435346
  29. Thomson, B. S., 10.14321/realanalexch.35.2.0487, Real Anal. Exch. 35 (2010), 487-492. (2010) Zbl1222.26009MR2683613DOI10.14321/realanalexch.35.2.0487
  30. Zemanian, A. H., Distribution Theory and Transform Analysis. An Introduction to Generalized Functions, with Applications. Reprint, slightly corrected, Dover Publications, New York (1987). (1987) Zbl0643.46028MR0918977
  31. Ziemer, W. P., Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Springer-Verlag, Berlin (1989). (1989) Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.