Integrals and Banach spaces for finite order distributions
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 1, page 77-104
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTalvila, Erik. "Integrals and Banach spaces for finite order distributions." Czechoslovak Mathematical Journal 62.1 (2012): 77-104. <http://eudml.org/doc/246963>.
@article{Talvila2012,
abstract = {Let $\mathcal \{B\}_c$ denote the real-valued functions continuous on the extended real line and vanishing at $-\infty $. Let $\mathcal \{B\}_r$ denote the functions that are left continuous, have a right limit at each point and vanish at $-\infty $. Define $\mathcal \{A\}^n_c$ to be the space of tempered distributions that are the $n$th distributional derivative of a unique function in $\mathcal \{B\}_c$. Similarly with $\mathcal \{A\}^n_r$ from $\mathcal \{B\}_r$. A type of integral is defined on distributions in $\mathcal \{A\}^n_c$ and $\mathcal \{A\}^n_r$. The multipliers are iterated integrals of functions of bounded variation. For each $n\in \mathbb \{N\}$, the spaces $\mathcal \{A\}^n_c$ and $\mathcal \{A\}^n_r$ are Banach spaces, Banach lattices and Banach algebras isometrically isomorphic to $\mathcal \{B\}_c$ and $\mathcal \{B\}_r$, respectively. Under the ordering in this lattice, if a distribution is integrable then its absolute value is integrable. The dual space is isometrically isomorphic to the functions of bounded variation. The space $\mathcal \{A\}_c^1$ is the completion of the $L^1$ functions in the Alexiewicz norm. The space $\mathcal \{A\}_r^1$ contains all finite signed Borel measures. Many of the usual properties of integrals hold: Hölder inequality, second mean value theorem, continuity in norm, linear change of variables, a convergence theorem.},
author = {Talvila, Erik},
journal = {Czechoslovak Mathematical Journal},
keywords = {regulated function; regulated primitive integral; Banach space; Banach lattice; Banach algebra; Schwartz distribution; generalized function; distributional Denjoy integral; continuous primitive integral; Henstock-Kurzweil integral; primitive; regulated function; regulated primitive integral; Banach lattice; distributional Denjoy integral; continuous primitive integral; Henstock-Kurzweil integral},
language = {eng},
number = {1},
pages = {77-104},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Integrals and Banach spaces for finite order distributions},
url = {http://eudml.org/doc/246963},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Talvila, Erik
TI - Integrals and Banach spaces for finite order distributions
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 77
EP - 104
AB - Let $\mathcal {B}_c$ denote the real-valued functions continuous on the extended real line and vanishing at $-\infty $. Let $\mathcal {B}_r$ denote the functions that are left continuous, have a right limit at each point and vanish at $-\infty $. Define $\mathcal {A}^n_c$ to be the space of tempered distributions that are the $n$th distributional derivative of a unique function in $\mathcal {B}_c$. Similarly with $\mathcal {A}^n_r$ from $\mathcal {B}_r$. A type of integral is defined on distributions in $\mathcal {A}^n_c$ and $\mathcal {A}^n_r$. The multipliers are iterated integrals of functions of bounded variation. For each $n\in \mathbb {N}$, the spaces $\mathcal {A}^n_c$ and $\mathcal {A}^n_r$ are Banach spaces, Banach lattices and Banach algebras isometrically isomorphic to $\mathcal {B}_c$ and $\mathcal {B}_r$, respectively. Under the ordering in this lattice, if a distribution is integrable then its absolute value is integrable. The dual space is isometrically isomorphic to the functions of bounded variation. The space $\mathcal {A}_c^1$ is the completion of the $L^1$ functions in the Alexiewicz norm. The space $\mathcal {A}_r^1$ contains all finite signed Borel measures. Many of the usual properties of integrals hold: Hölder inequality, second mean value theorem, continuity in norm, linear change of variables, a convergence theorem.
LA - eng
KW - regulated function; regulated primitive integral; Banach space; Banach lattice; Banach algebra; Schwartz distribution; generalized function; distributional Denjoy integral; continuous primitive integral; Henstock-Kurzweil integral; primitive; regulated function; regulated primitive integral; Banach lattice; distributional Denjoy integral; continuous primitive integral; Henstock-Kurzweil integral
UR - http://eudml.org/doc/246963
ER -
References
top- Alexiewicz, A., 10.4064/cm-1-4-289-293, Colloq. Math. 1 (1948), 289-293. (1948) Zbl0037.32302MR0030120DOI10.4064/cm-1-4-289-293
- Aliprantis, C. D., Border, K. C, Infinite Dimensional Analysis. A Hitchhiker's Guide, Springer, Berlin (2006). (2006) Zbl1156.46001MR2378491
- Ambrosio, L., Fusco, N., Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs. Oxford: Clarendon Press (2000). (2000) Zbl0957.49001MR1857292
- Axler, S., Bourdon, P., Ramey, W., Harmonic Function Theory, Springer, New York (2001). (2001) Zbl0959.31001MR1805196
- Burkill, J. C., 10.1017/S030500410003293X, Proc. Camb. Philos. Soc. 53 (1957), 821-824. (1957) Zbl0081.11303MR0094703DOI10.1017/S030500410003293X
- Čelidze, V. G., Džvaršeĭšvili, A. G., The Theory of the Denjoy Integral and Some Applications. Transl. from the Russian by P. S. Bullen, World Scientific, Singapore (1989). (1989) MR1036270
- Das, A. G., Sahu, G., An equivalent Denjoy type definition of the generalized Henstock Stieltjes integral, Bull. Inst. Math., Acad. Sin. 30 (2002), 27-49. (2002) Zbl1007.26004MR1891364
- Dunford, N., Schwartz, J. T., Linear Operators, Part I: General theory. With the assistance of William G. Bade and Robert G. Bartle. Repr. of the orig., publ. 1959 by John Wiley & Sons Ltd., Paperback ed. New York etc.: John Wiley & Sons Ltd. xiv (1988). (1988) Zbl0635.47003MR1009162
- Fleming, R. J., Jamison, J. E., Isometries on Banach Spaces: Function spaces, Chapman and Hall, Boca Raton (2003). (2003) Zbl1011.46001MR1957004
- Folland, G. B., Real Analysis. Modern Techniques and Their Applications. 2nd ed, Wiley, New York (1999). (1999) Zbl0924.28001MR1681462
- Fraňkova, D., Regulated functions, Math. Bohem. 116 (1991), 20-59. (1991) Zbl0724.26009MR1100424
- Friedlander, F. G., Joshi, M., Introduction to the Theory of Distributions, Cambridge etc.: Cambridge University Press. III (1982). (1982) MR0779092
- Gordon, R. A., The Integrals of Lebesgue, Denjoy, Perron, and Henstock, American Mathematical Society, Providence (1994). (1994) Zbl0807.26004MR1288751
- Kaniuth, E., A Course in Commutative Banach Algebras, Springer, New York (2009). (2009) Zbl1190.46001MR2458901
- Kannan, R., Krueger, C. K., Advanced Analysis on the Real Line, Springer, New York (1996). (1996) Zbl0855.26001MR1390758
- Lee, P. Y., Výborný, R., The Integral: An Easy Approach after Kurzweil and Henstock, Cambridge University Press, Cambridge (2000). (2000) MR1756319
- Lane, S. Mac, Birkhoff, G., Algebra, Macmillan, New York (1979). (1979) MR0524398
- McLeod, R. M., The Generalized Riemann Integral, The Mathematical Association of America, Washington (1980). (1980) Zbl0486.26005MR0588510
- Mikusiński, J., Sikorski, R., The elementary theory of distributions. I, Rozprawy Mat. 12 (1957), 52 pp. (1957) Zbl0078.11101MR0094702
- Musielak, J. A., A note on integrals of distributions, Pr. Mat. 8 (1963), 1-7. (1963) Zbl0202.40301MR0184080
- Oberguggenberger, M., Multiplication of Distributions and Applications to Partial Differential Equations, Longman Scientific and Technical, Harlow (1992). (1992) Zbl0818.46036MR1187755
- Russell, A. M., 10.1017/S1446788700012015, J. Aust. Math. Soc., Ser. A 26 (1978), 501-510. (1978) Zbl0398.26011MR0520103DOI10.1017/S1446788700012015
- Schwartz, L., Thèorie des Distributions. Nouvelle ed., entie`rement corr., refondue et augm, Hermann, Paris (1978), French. (1978) MR0209834
- Sikorski, R., 10.4064/sm-20-2-119-139, Stud. Math. 20 (1961), 119-139. (1961) Zbl0103.09102MR0126714DOI10.4064/sm-20-2-119-139
- Talvila, E., 10.2307/44154045, Real Anal. Exch. 25 (1999/2000), 907-918. (1999) MR1778542DOI10.2307/44154045
- Talvila, E., 10.14321/realanalexch.33.1.0051, Real Anal. Exch. 33 (2008), 51-82. (2008) Zbl1154.26011MR2402863DOI10.14321/realanalexch.33.1.0051
- Talvila, E., Convolutions with the continuous primitive integral, Abstr. Appl. Anal. 2009 (2009), 18 pp. (2009) Zbl1192.46039MR2559282
- Talvila, E., 10.1215/ijm/1290435346, Ill. J. Math. 53 (2009), 1187-1219. (2009) Zbl1207.26018MR2741185DOI10.1215/ijm/1290435346
- Thomson, B. S., 10.14321/realanalexch.35.2.0487, Real Anal. Exch. 35 (2010), 487-492. (2010) Zbl1222.26009MR2683613DOI10.14321/realanalexch.35.2.0487
- Zemanian, A. H., Distribution Theory and Transform Analysis. An Introduction to Generalized Functions, with Applications. Reprint, slightly corrected, Dover Publications, New York (1987). (1987) Zbl0643.46028MR0918977
- Ziemer, W. P., Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Springer-Verlag, Berlin (1989). (1989) Zbl0692.46022MR1014685
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.