J. C. Mayer, and E. D. Tymchatyn. Containing spaces for planar rational compacta. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1988. <http://eudml.org/doc/268398>.
@book{J1988, abstract = {CONTENTS1. Introduction.............................................................................52. Ordered scattered spaces......................................................6 2.1. Topological type..................................................................6 2.2. Ordered spaces..................................................................6 2.3. Rim-type.............................................................................9 2.4. Disk partitions.....................................................................93. Partition theorems.................................................................12 3.1. Partition Pullback Theorem...............................................13 3.2. Defining sequences of partitions.......................................13 3.3. a-Circlelacing lemmas.......................................................14 3.4. Brick Pulverizing Lemma...................................................15 3.5. Construction of a containing space...................................204. Embedding Theorem.............................................................215. Universal spaces...................................................................24 5.1. Question...........................................................................25 5.2. The Sierpiński curve.........................................................25 5.3. A conjectured universal planar rational space...................26 5.4. A conjectured universal planar space of rim-type ≤ a........26References................................................................................26}, author = {J. C. Mayer, E. D. Tymchatyn}, keywords = {planar rational compactum; rim-type; containing space; Sierpinski universal plane curve; universal planar rational space}, language = {eng}, location = {Warszawa}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, title = {Containing spaces for planar rational compacta}, url = {http://eudml.org/doc/268398}, year = {1988}, }
TY - BOOK AU - J. C. Mayer AU - E. D. Tymchatyn TI - Containing spaces for planar rational compacta PY - 1988 CY - Warszawa PB - Instytut Matematyczny Polskiej Akademi Nauk AB - CONTENTS1. Introduction.............................................................................52. Ordered scattered spaces......................................................6 2.1. Topological type..................................................................6 2.2. Ordered spaces..................................................................6 2.3. Rim-type.............................................................................9 2.4. Disk partitions.....................................................................93. Partition theorems.................................................................12 3.1. Partition Pullback Theorem...............................................13 3.2. Defining sequences of partitions.......................................13 3.3. a-Circlelacing lemmas.......................................................14 3.4. Brick Pulverizing Lemma...................................................15 3.5. Construction of a containing space...................................204. Embedding Theorem.............................................................215. Universal spaces...................................................................24 5.1. Question...........................................................................25 5.2. The Sierpiński curve.........................................................25 5.3. A conjectured universal planar rational space...................26 5.4. A conjectured universal planar space of rim-type ≤ a........26References................................................................................26 LA - eng KW - planar rational compactum; rim-type; containing space; Sierpinski universal plane curve; universal planar rational space UR - http://eudml.org/doc/268398 ER -