A Bing-Borsuk retract which contains a 2-dimensional absolute retract

Steve Armentrout

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1975

Abstract

top
Contents1. Introduction .................................................................................................. 52. Antoine’s necklaces.................................................................................... 63. Wreaths......................................................................................................... 74. Construction of discs.................................................................................. 75. Construction of Bing-Borsuk retracts ..................................................... 96. Sets in solid tori ......................................................................................... 107. Replacing discs in solid tori .................................................................... 148. Discs in X i r .......................................................................................... 189. X i r is an AR.......................................................................................... 1910. Construction of the decomposition M................................................... 2211. X is a 2-dimensional AR.......................................................................... 3012. Q* contains a 2-dimensional AR........................................................... 3613. Concluding remarks ............................................................................... 36References ...................................................................................................... 39

How to cite

top

Steve Armentrout. A Bing-Borsuk retract which contains a 2-dimensional absolute retract. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1975. <http://eudml.org/doc/268431>.

@book{SteveArmentrout1975,
abstract = {Contents1. Introduction .................................................................................................. 52. Antoine’s necklaces.................................................................................... 63. Wreaths......................................................................................................... 74. Construction of discs.................................................................................. 75. Construction of Bing-Borsuk retracts ..................................................... 96. Sets in solid tori ......................................................................................... 107. Replacing discs in solid tori .................................................................... 148. Discs in $X^\{ir\}$.......................................................................................... 189. $X^\{ir\}$ is an AR.......................................................................................... 1910. Construction of the decomposition M................................................... 2211. X is a 2-dimensional AR.......................................................................... 3012. Q* contains a 2-dimensional AR........................................................... 3613. Concluding remarks ............................................................................... 36References ...................................................................................................... 39},
author = {Steve Armentrout},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {A Bing-Borsuk retract which contains a 2-dimensional absolute retract},
url = {http://eudml.org/doc/268431},
year = {1975},
}

TY - BOOK
AU - Steve Armentrout
TI - A Bing-Borsuk retract which contains a 2-dimensional absolute retract
PY - 1975
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - Contents1. Introduction .................................................................................................. 52. Antoine’s necklaces.................................................................................... 63. Wreaths......................................................................................................... 74. Construction of discs.................................................................................. 75. Construction of Bing-Borsuk retracts ..................................................... 96. Sets in solid tori ......................................................................................... 107. Replacing discs in solid tori .................................................................... 148. Discs in $X^{ir}$.......................................................................................... 189. $X^{ir}$ is an AR.......................................................................................... 1910. Construction of the decomposition M................................................... 2211. X is a 2-dimensional AR.......................................................................... 3012. Q* contains a 2-dimensional AR........................................................... 3613. Concluding remarks ............................................................................... 36References ...................................................................................................... 39
LA - eng
UR - http://eudml.org/doc/268431
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.