Synthesis of optimal control for nonlinear third order systems

Wiesław Szwiec

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1986

Abstract

top
The paper is devoted to a certain problem in the theory of synthesis of optimal control. The fundamental results of research in the synthesis of optimal control for second order systems are given in [1], [2], [5], [10]. In particular, in [2] and [5] some specific nonlinear systems are investigated, namely the systems related with the differential equations of the forms̈ + F(s,ṡ) = u or s̈ + F(s,ṡ,u) = 0where u is a control parameter in the interval [—1,1]. Some results concerning third order linear systems are presented in [7], [8], [9] and [12]. The main purpose of this paper is the formulation of the synthesis of optimal control for a class of nonlinear dynamic systems of the third order corresponding to a differential equation of the form(1) ͘s̈ = F(s,ṡ,s̈,u) where u ∈ [-1,1].CONTENTS1. Formulation of the problem.......................................................................................................................52. Necessary conditions for the optimality of control.....................................................................................73. Some properties of extremal trajectories.................................................................................................124. Inequalities describing the mutual position of the trajectories K + ( 0 ) ,K¯(p),K¯(0), K + ( q ) ................315. Remark on the existence of common points of the trajectories K¯(0), K¯(p) and K + ( r ) and of the trajectories K + ( 0 ) , K + ( q ) and K¯(s)...........................................................................................................................................................376. Mutual position of the trajectories K + ( r ) and K ¯ ( s ) .........................................................................477. The uniqueness of an extremal control. Synthesis of optimal control......................................................56References.................................................................................................................................................60

How to cite

top

Wiesław Szwiec. Synthesis of optimal control for nonlinear third order systems. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1986. <http://eudml.org/doc/268453>.

@book{WiesławSzwiec1986,
abstract = {The paper is devoted to a certain problem in the theory of synthesis of optimal control. The fundamental results of research in the synthesis of optimal control for second order systems are given in [1], [2], [5], [10]. In particular, in [2] and [5] some specific nonlinear systems are investigated, namely the systems related with the differential equations of the forms̈ + F(s,ṡ) = u or s̈ + F(s,ṡ,u) = 0where u is a control parameter in the interval [—1,1]. Some results concerning third order linear systems are presented in [7], [8], [9] and [12]. The main purpose of this paper is the formulation of the synthesis of optimal control for a class of nonlinear dynamic systems of the third order corresponding to a differential equation of the form(1) ͘s̈ = F(s,ṡ,s̈,u) where u ∈ [-1,1].CONTENTS1. Formulation of the problem.......................................................................................................................52. Necessary conditions for the optimality of control.....................................................................................73. Some properties of extremal trajectories.................................................................................................124. Inequalities describing the mutual position of the trajectories $K^+(0)$,K¯(p),K¯(0),$K^+(q)$................315. Remark on the existence of common points of the trajectories K¯(0), K¯(p) and $K^+(r)$ and of the trajectories $K^+(0)$, $K^+(q)$ and K¯(s)...........................................................................................................................................................376. Mutual position of the trajectories $K^+(r)$ and $K¯(s)$.........................................................................477. The uniqueness of an extremal control. Synthesis of optimal control......................................................56References.................................................................................................................................................60},
author = {Wiesław Szwiec},
keywords = {Third order control systems; time-optimal control; uniqueness; geometry of optimal trajectories},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Synthesis of optimal control for nonlinear third order systems},
url = {http://eudml.org/doc/268453},
year = {1986},
}

TY - BOOK
AU - Wiesław Szwiec
TI - Synthesis of optimal control for nonlinear third order systems
PY - 1986
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - The paper is devoted to a certain problem in the theory of synthesis of optimal control. The fundamental results of research in the synthesis of optimal control for second order systems are given in [1], [2], [5], [10]. In particular, in [2] and [5] some specific nonlinear systems are investigated, namely the systems related with the differential equations of the forms̈ + F(s,ṡ) = u or s̈ + F(s,ṡ,u) = 0where u is a control parameter in the interval [—1,1]. Some results concerning third order linear systems are presented in [7], [8], [9] and [12]. The main purpose of this paper is the formulation of the synthesis of optimal control for a class of nonlinear dynamic systems of the third order corresponding to a differential equation of the form(1) ͘s̈ = F(s,ṡ,s̈,u) where u ∈ [-1,1].CONTENTS1. Formulation of the problem.......................................................................................................................52. Necessary conditions for the optimality of control.....................................................................................73. Some properties of extremal trajectories.................................................................................................124. Inequalities describing the mutual position of the trajectories $K^+(0)$,K¯(p),K¯(0),$K^+(q)$................315. Remark on the existence of common points of the trajectories K¯(0), K¯(p) and $K^+(r)$ and of the trajectories $K^+(0)$, $K^+(q)$ and K¯(s)...........................................................................................................................................................376. Mutual position of the trajectories $K^+(r)$ and $K¯(s)$.........................................................................477. The uniqueness of an extremal control. Synthesis of optimal control......................................................56References.................................................................................................................................................60
LA - eng
KW - Third order control systems; time-optimal control; uniqueness; geometry of optimal trajectories
UR - http://eudml.org/doc/268453
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.