Synthesis of optimal control for nonlinear third order systems
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1986
Access Full Book
topAbstract
topHow to cite
topWiesław Szwiec. Synthesis of optimal control for nonlinear third order systems. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1986. <http://eudml.org/doc/268453>.
@book{WiesławSzwiec1986,
abstract = {The paper is devoted to a certain problem in the theory of synthesis of optimal control. The fundamental results of research in the synthesis of optimal control for second order systems are given in [1], [2], [5], [10]. In particular, in [2] and [5] some specific nonlinear systems are investigated, namely the systems related with the differential equations of the forms̈ + F(s,ṡ) = u or s̈ + F(s,ṡ,u) = 0where u is a control parameter in the interval [—1,1]. Some results concerning third order linear systems are presented in [7], [8], [9] and [12]. The main purpose of this paper is the formulation of the synthesis of optimal control for a class of nonlinear dynamic systems of the third order corresponding to a differential equation of the form(1) ͘s̈ = F(s,ṡ,s̈,u) where u ∈ [-1,1].CONTENTS1. Formulation of the problem.......................................................................................................................52. Necessary conditions for the optimality of control.....................................................................................73. Some properties of extremal trajectories.................................................................................................124. Inequalities describing the mutual position of the trajectories $K^+(0)$,K¯(p),K¯(0),$K^+(q)$................315. Remark on the existence of common points of the trajectories K¯(0), K¯(p) and $K^+(r)$ and of the trajectories $K^+(0)$, $K^+(q)$ and K¯(s)...........................................................................................................................................................376. Mutual position of the trajectories $K^+(r)$ and $K¯(s)$.........................................................................477. The uniqueness of an extremal control. Synthesis of optimal control......................................................56References.................................................................................................................................................60},
author = {Wiesław Szwiec},
keywords = {Third order control systems; time-optimal control; uniqueness; geometry of optimal trajectories},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Synthesis of optimal control for nonlinear third order systems},
url = {http://eudml.org/doc/268453},
year = {1986},
}
TY - BOOK
AU - Wiesław Szwiec
TI - Synthesis of optimal control for nonlinear third order systems
PY - 1986
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - The paper is devoted to a certain problem in the theory of synthesis of optimal control. The fundamental results of research in the synthesis of optimal control for second order systems are given in [1], [2], [5], [10]. In particular, in [2] and [5] some specific nonlinear systems are investigated, namely the systems related with the differential equations of the forms̈ + F(s,ṡ) = u or s̈ + F(s,ṡ,u) = 0where u is a control parameter in the interval [—1,1]. Some results concerning third order linear systems are presented in [7], [8], [9] and [12]. The main purpose of this paper is the formulation of the synthesis of optimal control for a class of nonlinear dynamic systems of the third order corresponding to a differential equation of the form(1) ͘s̈ = F(s,ṡ,s̈,u) where u ∈ [-1,1].CONTENTS1. Formulation of the problem.......................................................................................................................52. Necessary conditions for the optimality of control.....................................................................................73. Some properties of extremal trajectories.................................................................................................124. Inequalities describing the mutual position of the trajectories $K^+(0)$,K¯(p),K¯(0),$K^+(q)$................315. Remark on the existence of common points of the trajectories K¯(0), K¯(p) and $K^+(r)$ and of the trajectories $K^+(0)$, $K^+(q)$ and K¯(s)...........................................................................................................................................................376. Mutual position of the trajectories $K^+(r)$ and $K¯(s)$.........................................................................477. The uniqueness of an extremal control. Synthesis of optimal control......................................................56References.................................................................................................................................................60
LA - eng
KW - Third order control systems; time-optimal control; uniqueness; geometry of optimal trajectories
UR - http://eudml.org/doc/268453
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.