Comparison of solutions and successive approximations in the theory of the equation 2 z / x y = f ( x , y , z , z / x , z / y )

J. Kisyński; A. Pelczar

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1970

Abstract

top
CONTENTSIntroduction........................................................................................................................................................................................................... 5I. THE CAUCHY-DARBOUX PROBLEM IN FUNCTION CLASSES C 1 ' * ( Δ a , b ; E ) AND L 1 1 , * ( Δ a , b ; E ) ......................... 71. Basic function classes ................................................................................................................................................................................... 72. The Cauchy-Darboux problem ...................................................................................................................................................................... 12II. Comparison of solutions ............................................................................................................................................................................... 183. The growth estimations.................................................................................................................................................................................. 184. Maximal solutions............................................................................................................................................................................................ 265. A theorem on extension of inequalities........................................................................................................................................................ 286. Effective estimation in the case M 1 , (b)................................................................................................................................................. 30III. COMPARATIVE CRITERIA OF EXISTENCE AND UNIQUENESS OP SOLUTIONS OF THE CAUCHY-DARBOUX PROBLEM...................................................................................................................................................................................... 357. Basic classes of comparative functions...................................................................................................................................................... 358. Existence and uniqueness of solutions of the Cauchy-Darboux problem............................................................................................ 429. Remarks on the continuous dependence of solutions on boundary data and on the second member........................................ 4710. Examples......................................................................................................................................................................................................... 49BIBLIOGRAPHICAL REMARKS.......................................................................................................................................................................... 66BIBLIOGRAPHY..................................................................................................................................................................................................... 68INDEX OF SYMBOLS............................................................................................................................................................................................ 74

How to cite

top

J. Kisyński, and A. Pelczar. Comparison of solutions and successive approximations in the theory of the equation $∂^2z/∂x∂y = f(x, y, z, ∂z/∂x, ∂z/∂y)$. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1970. <http://eudml.org/doc/268455>.

@book{J1970,
abstract = {CONTENTSIntroduction........................................................................................................................................................................................................... 5I. THE CAUCHY-DARBOUX PROBLEM IN FUNCTION CLASSES $C^1^\{\prime \}*(Δ_\{a,b\};E)$ AND $L^\{1,*\}_1(Δ_\{a,b\};E)$......................... 71. Basic function classes ................................................................................................................................................................................... 72. The Cauchy-Darboux problem ...................................................................................................................................................................... 12II. Comparison of solutions ............................................................................................................................................................................... 183. The growth estimations.................................................................................................................................................................................. 184. Maximal solutions............................................................................................................................................................................................ 265. A theorem on extension of inequalities........................................................................................................................................................ 286. Effective estimation in the case $M_1$, (b)................................................................................................................................................. 30III. COMPARATIVE CRITERIA OF EXISTENCE AND UNIQUENESS OP SOLUTIONS OF THE CAUCHY-DARBOUX PROBLEM...................................................................................................................................................................................... 357. Basic classes of comparative functions...................................................................................................................................................... 358. Existence and uniqueness of solutions of the Cauchy-Darboux problem............................................................................................ 429. Remarks on the continuous dependence of solutions on boundary data and on the second member........................................ 4710. Examples......................................................................................................................................................................................................... 49BIBLIOGRAPHICAL REMARKS.......................................................................................................................................................................... 66BIBLIOGRAPHY..................................................................................................................................................................................................... 68INDEX OF SYMBOLS............................................................................................................................................................................................ 74},
author = {J. Kisyński, A. Pelczar},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Comparison of solutions and successive approximations in the theory of the equation $∂^2z/∂x∂y = f(x, y, z, ∂z/∂x, ∂z/∂y)$},
url = {http://eudml.org/doc/268455},
year = {1970},
}

TY - BOOK
AU - J. Kisyński
AU - A. Pelczar
TI - Comparison of solutions and successive approximations in the theory of the equation $∂^2z/∂x∂y = f(x, y, z, ∂z/∂x, ∂z/∂y)$
PY - 1970
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction........................................................................................................................................................................................................... 5I. THE CAUCHY-DARBOUX PROBLEM IN FUNCTION CLASSES $C^1^{\prime }*(Δ_{a,b};E)$ AND $L^{1,*}_1(Δ_{a,b};E)$......................... 71. Basic function classes ................................................................................................................................................................................... 72. The Cauchy-Darboux problem ...................................................................................................................................................................... 12II. Comparison of solutions ............................................................................................................................................................................... 183. The growth estimations.................................................................................................................................................................................. 184. Maximal solutions............................................................................................................................................................................................ 265. A theorem on extension of inequalities........................................................................................................................................................ 286. Effective estimation in the case $M_1$, (b)................................................................................................................................................. 30III. COMPARATIVE CRITERIA OF EXISTENCE AND UNIQUENESS OP SOLUTIONS OF THE CAUCHY-DARBOUX PROBLEM...................................................................................................................................................................................... 357. Basic classes of comparative functions...................................................................................................................................................... 358. Existence and uniqueness of solutions of the Cauchy-Darboux problem............................................................................................ 429. Remarks on the continuous dependence of solutions on boundary data and on the second member........................................ 4710. Examples......................................................................................................................................................................................................... 49BIBLIOGRAPHICAL REMARKS.......................................................................................................................................................................... 66BIBLIOGRAPHY..................................................................................................................................................................................................... 68INDEX OF SYMBOLS............................................................................................................................................................................................ 74
LA - eng
UR - http://eudml.org/doc/268455
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.