Displaying similar documents to “Comparison of solutions and successive approximations in the theory of the equation 2 z / x y = f ( x , y , z , z / x , z / y )

On the opial type criterion for the well-posedness of the Cauchy problem for linear systems of generalized ordinary differential equations

Malkhaz Ashordia (2016)

Mathematica Bohemica

Similarity:

The Cauchy problem for the system of linear generalized ordinary differential equations in the J. Kurzweil sense d x ( t ) = d A 0 ( t ) · x ( t ) + d f 0 ( t ) , x ( t 0 ) = c 0 ( t I ) with a unique solution x 0 is considered. Necessary and sufficient conditions are obtained for a sequence of the Cauchy problems d x ( t ) = d A k ( t ) · x ( t ) + d f k ( t ) , x ( t k ) = c k ( k = 1 , 2 , ) to have a unique solution x k for any sufficiently large k such that x k ( t ) x 0 ( t ) uniformly on I . Presented results are analogous to the sufficient conditions due to Z. Opial for linear ordinary differential systems....

The sizes of the classes of H ( N ) -sets

Václav Vlasák (2014)

Fundamenta Mathematicae

Similarity:

The class of H ( N ) -sets forms an important subclass of the class of sets of uniqueness for trigonometric series. We investigate the size of this class which is reflected by the family of measures (called polar) annihilating all sets from the class. The main aim of this paper is to answer in the negative a question stated by Lyons, whether the polars of the classes of H ( N ) -sets are the same for all N ∈ ℕ. To prove our result we also present a new description of H ( N ) -sets.

Divergent solutions to the 5D Hartree equations

Daomin Cao, Qing Guo (2011)

Colloquium Mathematicae

Similarity:

We consider the Cauchy problem for the focusing Hartree equation i u t + Δ u + ( | · | - 3 | u | ² ) u = 0 in ℝ⁵ with initial data in H¹, and study the divergence property of infinite-variance and nonradial solutions. For the ground state solution of - Q + Δ Q + ( | · | - 3 | Q | ² ) Q = 0 in ℝ⁵, we prove that if u₀ ∈ H¹ satisfies M(u₀)E(u₀) < M(Q)E(Q) and ||∇u₀||₂||u₀||₂ > ||∇Q||₂||Q||₂, then the corresponding solution u(t) either blows up in finite forward time, or exists globally for positive time and there exists a time sequence tₙ → ∞ such that ||∇u(tₙ)||₂...

Global regularity for the 3D MHD system with damping

Zujin Zhang, Xian Yang (2016)

Colloquium Mathematicae

Similarity:

We study the Cauchy problem for the 3D MHD system with damping terms ε | u | α - 1 u and δ | b | β - 1 b (ε, δ > 0 and α, β ≥ 1), and show that the strong solution exists globally for any α, β > 3. This improves the previous results significantly.

The number of conjugacy classes of elements of the Cremona group of some given finite order

Jérémy Blanc (2007)

Bulletin de la Société Mathématique de France

Similarity:

This note presents the study of the conjugacy classes of elements of some given finite order n in the Cremona group of the plane. In particular, it is shown that the number of conjugacy classes is infinite if n is even, n = 3 or n = 5 , and that it is equal to 3 (respectively 9 ) if n = 9 (respectively if n = 15 ) and to 1 for all remaining odd orders. Some precise representative elements of the classes are given.

On higher-order semilinear parabolic equations with measures as initial data

Victor Galaktionov (2004)

Journal of the European Mathematical Society

Similarity:

We consider 2 m th-order ( m 2 ) semilinear parabolic equations u t = ( Δ ) m u ± | u | p 1 u in N × + ( p > 1 ) , with Dirac’s mass δ ( x ) as the initial function. We show that for p < p 0 = 1 + 2 m / N , the Cauchy problem admits a solution u ( x , t ) which is bounded and smooth for small t > 0 , while for p p 0 such a local in time solution does not exist. This leads to a boundary layer phenomenon in constructing a proper solution via regular approximations.

L 2 well-posed Cauchy problems and symmetrizability of first order systems

Guy Métivier (2014)

Journal de l’École polytechnique — Mathématiques

Similarity:

The Cauchy problem for first order system L ( t , x , t , x ) is known to be well-posed in L 2 when it admits a microlocal symmetrizer S ( t , x , ξ ) which is smooth in ξ and Lipschitz continuous in ( t , x ) . This paper contains three main results. First we show that a Lipschitz smoothness globally in ( t , x , ξ ) is sufficient. Second, we show that the existence of symmetrizers with a given smoothness is equivalent to the existence of having the same smoothness. This notion was first introduced in []. This is the key point to prove...

Nonexistence results for the Cauchy problem of some systems of hyperbolic equations

Mokhtar Kirane, Salim Messaoudi (2002)

Annales Polonici Mathematici

Similarity:

We consider the systems of hyperbolic equations ⎧ u = Δ ( a ( t , x ) u ) + Δ ( b ( t , x ) v ) + h ( t , x ) | v | p , t > 0, x N , (S1) ⎨ ⎩ v = Δ ( c ( t , x ) v ) + k ( t , x ) | u | q , t > 0, x N u = Δ ( a ( t , x ) u ) + h ( t , x ) | v | p , t > 0, x N , (S2) ⎨ ⎩ v = Δ ( c ( t , x ) v ) + l ( t , x ) | v | m + k ( t , x ) | u | q , t > 0, x N , (S3) ⎧ u = Δ ( a ( t , x ) u ) + Δ ( b ( t , x ) v ) + h ( t , x ) | u | p , t > 0, x N , ⎨ ⎩ v = Δ ( c ( t , x ) v ) + k ( t , x ) | v | q , t > 0, x N , in ( 0 , ) × N with u(0,x) = u₀(x), v(0,x) = v₀(x), uₜ(0,x) = u₁(x), vₜ(0,x) = v₁(x). We show that, in each case, there exists a bound B on N such that for 1 ≤ N ≤ B solutions to the systems blow up in finite time.

Unconditional uniqueness of higher order nonlinear Schrödinger equations

Friedrich Klaus, Peer Kunstmann, Nikolaos Pattakos (2021)

Czechoslovak Mathematical Journal

Similarity:

We show the existence of weak solutions in the extended sense of the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation with the initial data u 0 X , where X { M 2 , q s ( ) , H σ ( 𝕋 ) , H s 1 ( ) + H s 2 ( 𝕋 ) } and q [ 1 , 2 ] , s 0 , or σ 0 , or s 2 s 1 0 . Moreover, if M 2 , q s ( ) L 3 ( ) , or if σ 1 6 , or if s 1 1 6 and s 2 > 1 2 we show that the Cauchy problem is unconditionally wellposed in X . Similar results hold true for all higher order nonlinear Schrödinger equations and mixed order NLS due to a factorization property of the corresponding phase factors. For the proof we employ...

Neutral set differential equations

Umber Abbas, Vasile Lupulescu, Donald O&amp;#039;Regan, Awais Younus (2015)

Czechoslovak Mathematical Journal

Similarity:

The aim of this paper is to establish an existence and uniqueness result for a class of the set functional differential equations of neutral type D H X ( t ) = F ( t , X t , D H X t ) , X | [ - r , 0 ] = Ψ , where F : [ 0 , b ] × 𝒞 0 × 𝔏 0 1 K c ( E ) is a given function, K c ( E ) is the family of all nonempty compact and convex subsets of a separable Banach space E , 𝒞 0 denotes the space of all continuous set-valued functions X from [ - r , 0 ] into K c ( E ) , 𝔏 0 1 is the space of all integrally bounded set-valued functions X : [ - r , 0 ] K c ( E ) , Ψ 𝒞 0 and D H is the Hukuhara derivative. The continuous dependence of solutions on initial...

Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems

Tayeb Benhamoud, Elmehdi Zaouche, Mahmoud Bousselsal (2024)

Mathematica Bohemica

Similarity:

This paper is concerned with the study of a nonlocal nonlinear parabolic problem associated with the equation u t - M ( Ω φ u d x ) div ( A ( x , t , u ) u ) = g ( x , t , u ) in Ω × ( 0 , T ) , where Ω is a bounded domain of n ( n 1 ) , T > 0 is a positive number, A ( x , t , u ) is an n × n matrix of variable coefficients depending on u and M : , φ : Ω , g : Ω × ( 0 , T ) × are given functions. We consider two different assumptions on g . The existence of a weak solution for this problem is proved using the Schauder fixed point theorem for each of these assumptions. Moreover, if A ( x , t , u ) = a ( x , t ) depends only on...

Linear FDEs in the frame of generalized ODEs: variation-of-constants formula

Rodolfo Collegari, Márcia Federson, Miguel Frasson (2018)

Czechoslovak Mathematical Journal

Similarity:

We present a variation-of-constants formula for functional differential equations of the form y ˙ = ( t ) y t + f ( y t , t ) , y t 0 = ϕ , where is a bounded linear operator and ϕ is a regulated function. Unlike the result by G. Shanholt (1972), where the functions involved are continuous, the novelty here is that the application t f ( y t , t ) is Kurzweil integrable with t in an interval of , for each regulated function y . This means that t f ( y t , t ) may admit not only many discontinuities, but it can also be highly oscillating and yet, we are...

On the abstract Cauchy problem in the case of constant domains

Paolo Acquistapace, Brunello Terreni (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

Si studiano esistenza, unicità e regolarità delle soluzioni strette, classiche e forti u 𝐂 ( [ 0 , T ] , E ) dell'equazione di evoluzione non autonoma u ( t ) - A ( t ) u ( t ) = f ( t ) con il dato iniziale u ( 0 ) = x , in uno spazio di Banach E . Gli operatori A ( t ) sono generatori infinitesimali di semi-gruppi analitici ed hanno dominio indipendente da t e non necessariamente denso in E . Si danno condizioni necessarie e sufficienti per l'esistenza e la regolarità hölderiana della soluzione e della sua derivata.

A note on multilinear Muckenhoupt classes for multiple weights

Songqing Chen, Huoxiong Wu, Qingying Xue (2014)

Studia Mathematica

Similarity:

This paper is devoted to investigating the properties of multilinear A P conditions and A ( P , q ) conditions, which are suitable for the study of multilinear operators on Lebesgue spaces. Some monotonicity properties of A P and A ( P , q ) classes with respect to P⃗ and q are given, although these classes are not in general monotone with respect to the natural partial order. Equivalent characterizations of multilinear A ( P , q ) classes in terms of the linear A p classes are established. These results essentially improve...

Admissible spaces for a first order differential equation with delayed argument

Nina A. Chernyavskaya, Lela S. Dorel, Leonid A. Shuster (2019)

Czechoslovak Mathematical Journal

Similarity:

We consider the equation - y ' ( x ) + q ( x ) y ( x - ϕ ( x ) ) = f ( x ) , x , where ϕ and q ( q 1 ) are positive continuous functions for all x and f C ( ) . By a solution of the equation we mean any function y , continuously differentiable everywhere in , which satisfies the equation for all x . We show that under certain additional conditions on the functions ϕ and q , the above equation has a unique solution y , satisfying the inequality y ' C ( ) + q y C ( ) c f C ( ) , where the constant c ( 0 , ) does not depend on the choice of f .

Capacitary estimates of positive solutions of semilinear elliptic equations with absorbtion

Moshe Marcus, Laurent Véron (2004)

Journal of the European Mathematical Society

Similarity:

Let Ω be a bounded domain of class C 2 in N and let K be a compact subset of Ω . Assume that q ( N + 1 ) / ( N 1 ) and denote by U K the maximal solution of Δ u + u q = 0 in Ω which vanishes on Ω K . We obtain sharp upper and lower estimates for U K in terms of the Bessel capacity C 2 / q , q ' and prove that U K is σ -moderate. In addition we describe the precise asymptotic behavior of U K at points σ K , which depends on the “density” of K at σ , measured in terms of the capacity C 2 / q , q ' .

On a system of equations with primes

Paolo Leonetti, Salvatore Tringali (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Given an integer n 3 , let u 1 , ... , u n be pairwise coprime integers 2 , 𝒟 a family of nonempty proper subsets of { 1 , ... , n } with “enough” elements, and ε a function 𝒟 { ± 1 } . Does there exist at least one prime q such that q divides i I u i - ε ( I ) for some I 𝒟 , but it does not divide u 1 u n ? We answer this question in the positive when the u i are prime powers and ε and 𝒟 are subjected to certain restrictions. We use the result to prove that, if ε 0 { ± 1 } and A is a set of three or more primes that contains all prime divisors of any...