Countable-dimensional spaces: a survey

Ryszard Engelking; Elżbieta Pol

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1983

Abstract

top
CONTENTS1. Definitions and characterizations ...................................................52. Subspace theorems .....................................................................103. Addition and sum theorems..........................................................134. Cartesian product theorems.........................................................205. Compactification and completion theorems..................................246. Universal space theorems............................................................287. Mapping theorems .......................................................................298. Relations to other classes of infinite-dimensional spaces ............33Bibliography......................................................................................38

How to cite

top

Ryszard Engelking, and Elżbieta Pol. Countable-dimensional spaces: a survey. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1983. <http://eudml.org/doc/268456>.

@book{RyszardEngelking1983,
abstract = {CONTENTS1. Definitions and characterizations ...................................................52. Subspace theorems .....................................................................103. Addition and sum theorems..........................................................134. Cartesian product theorems.........................................................205. Compactification and completion theorems..................................246. Universal space theorems............................................................287. Mapping theorems .......................................................................298. Relations to other classes of infinite-dimensional spaces ............33Bibliography......................................................................................38},
author = {Ryszard Engelking, Elżbieta Pol},
keywords = {perfectly normal countable-dimensional space; covering dimension; homogeneous compact metric space; Hilbert cube; Continuum Hypothesis; questions; Subspace theorems; sum theorems; product theorems; compactification and completion theorems; universal space},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Countable-dimensional spaces: a survey},
url = {http://eudml.org/doc/268456},
year = {1983},
}

TY - BOOK
AU - Ryszard Engelking
AU - Elżbieta Pol
TI - Countable-dimensional spaces: a survey
PY - 1983
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTS1. Definitions and characterizations ...................................................52. Subspace theorems .....................................................................103. Addition and sum theorems..........................................................134. Cartesian product theorems.........................................................205. Compactification and completion theorems..................................246. Universal space theorems............................................................287. Mapping theorems .......................................................................298. Relations to other classes of infinite-dimensional spaces ............33Bibliography......................................................................................38
LA - eng
KW - perfectly normal countable-dimensional space; covering dimension; homogeneous compact metric space; Hilbert cube; Continuum Hypothesis; questions; Subspace theorems; sum theorems; product theorems; compactification and completion theorems; universal space
UR - http://eudml.org/doc/268456
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.