A general theory of polyhedral sets and the corresponding T-complexes

David W. Jones

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1988

Abstract

top
PrefaceThis paper is essentially David Jones' 1984 University of Wales Ph. D. Thesis, "Poly-T-complexes". It is published concurrently with Asley, 1988.The main aim is to find a setting for the most general kinds of geometrically defined compositions. Thus it comes under the slogan: "Find an algebraic inverse to subdivision". In the background is the Generalised Van Kampen Theorem, whose proof uses in an essential way general compositions of cubes. An even older background is the idea in topology of cycles in a space as some kind of composition of small pieces.The technicalities of even this stage of the theory mean that a number of problems are left unresolved. These are summarised in David Jones' final chapter. However the fundamental nature of the basic ideas should make this paper a useful stimulus to further work.N. Ashley, 1988, Simplicial T-complexes: a non-abelian version of a theorem of Dold and Kan, Diss. Math. 265.Ronald Brown, Bangor, 1988CONTENTSPreface......................................................................................................5Introduction...............................................................................................61. A class of model categories.................................................................101.1 Categories with models......................................................................101.2. Cone-complexes...............................................................................121.3. Three standard constructions..........................................................141.4. Marked cone-complexes and the category Poly...............................161.5. Consequences of the marked face structure of a polycell................191.6. Subcategories of Poly appropriate as model categories..................232. Posets and shellability.........................................................................262.1. Shelling............................................................................................262.2. The class ET of model categories....................................................292.3. Face posets of S-polycells...............................................................322.4. The equivalence SPoly → SPos.......................................................363. Equivalences of categories of T-complexes.........................................403.1. T-complexes.....................................................................................403.2. The isomorphism ∆TC → ∆₁TC........................................................423.3. Structures and collapsing.................................................................453.4. Particular collapses in Sd X and VX..................................................473.5. The collapse A ( n ) in Sd n - p n .......................................553.6. The functor e , from ∆₁T-complexes to ℳ T-complexes...........623.7. The natural equivalence r e 1 .....................................633.8. The equivalence of categories.........................................................654. Degeneracy structures in ℳ T-complexes...........................................674.1. An approach to degeneracy structures in ℳ T-complexes...............684.2. Pseudocylinder structures on SC-complexes...................................704.3. Rectifiers on pseudocylinders..........................................................744.4. Degenerate elements in an ℳ T-complex........................................774.5. Functors between categories of T-complexes..................................834.6. Suggested proof of Claims 5.4 and 5.10..........................................865. Comments and possibilities for further work........................................92Appendix. S-shellability of cone-complexes.............................................98Glossary of symbols..............................................................................106References...........................................................................................109Errata Page, line: 5⁴ For: Asley, 1988 Read: Ashley, 1988

How to cite

top

David W. Jones. A general theory of polyhedral sets and the corresponding T-complexes. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1988. <http://eudml.org/doc/268464>.

@book{DavidW1988,
abstract = {PrefaceThis paper is essentially David Jones' 1984 University of Wales Ph. D. Thesis, "Poly-T-complexes". It is published concurrently with Asley, 1988.The main aim is to find a setting for the most general kinds of geometrically defined compositions. Thus it comes under the slogan: "Find an algebraic inverse to subdivision". In the background is the Generalised Van Kampen Theorem, whose proof uses in an essential way general compositions of cubes. An even older background is the idea in topology of cycles in a space as some kind of composition of small pieces.The technicalities of even this stage of the theory mean that a number of problems are left unresolved. These are summarised in David Jones' final chapter. However the fundamental nature of the basic ideas should make this paper a useful stimulus to further work.N. Ashley, 1988, Simplicial T-complexes: a non-abelian version of a theorem of Dold and Kan, Diss. Math. 265.Ronald Brown, Bangor, 1988CONTENTSPreface......................................................................................................5Introduction...............................................................................................61. A class of model categories.................................................................101.1 Categories with models......................................................................101.2. Cone-complexes...............................................................................121.3. Three standard constructions..........................................................141.4. Marked cone-complexes and the category Poly...............................161.5. Consequences of the marked face structure of a polycell................191.6. Subcategories of Poly appropriate as model categories..................232. Posets and shellability.........................................................................262.1. Shelling............................................................................................262.2. The class ET of model categories....................................................292.3. Face posets of S-polycells...............................................................322.4. The equivalence SPoly → SPos.......................................................363. Equivalences of categories of T-complexes.........................................403.1. T-complexes.....................................................................................403.2. The isomorphism ∆TC → ∆₁TC........................................................423.3. Structures and collapsing.................................................................453.4. Particular collapses in Sd X and VX..................................................473.5. The collapse $A(∆^n)$ in Sd $∆^n - p ∆^n$.......................................553.6. The functor $e_ℳ$, from ∆₁T-complexes to ℳ T-complexes...........623.7. The natural equivalence $r_ℳ ∘ e_ℳ ≃1$.....................................633.8. The equivalence of categories.........................................................654. Degeneracy structures in ℳ T-complexes...........................................674.1. An approach to degeneracy structures in ℳ T-complexes...............684.2. Pseudocylinder structures on SC-complexes...................................704.3. Rectifiers on pseudocylinders..........................................................744.4. Degenerate elements in an ℳ T-complex........................................774.5. Functors between categories of T-complexes..................................834.6. Suggested proof of Claims 5.4 and 5.10..........................................865. Comments and possibilities for further work........................................92Appendix. S-shellability of cone-complexes.............................................98Glossary of symbols..............................................................................106References...........................................................................................109Errata Page, line: 5⁴ For: Asley, 1988 Read: Ashley, 1988},
author = {David W. Jones},
keywords = {polyhedral methods in algebraic topology; shellability of cone-complexes},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {A general theory of polyhedral sets and the corresponding T-complexes},
url = {http://eudml.org/doc/268464},
year = {1988},
}

TY - BOOK
AU - David W. Jones
TI - A general theory of polyhedral sets and the corresponding T-complexes
PY - 1988
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - PrefaceThis paper is essentially David Jones' 1984 University of Wales Ph. D. Thesis, "Poly-T-complexes". It is published concurrently with Asley, 1988.The main aim is to find a setting for the most general kinds of geometrically defined compositions. Thus it comes under the slogan: "Find an algebraic inverse to subdivision". In the background is the Generalised Van Kampen Theorem, whose proof uses in an essential way general compositions of cubes. An even older background is the idea in topology of cycles in a space as some kind of composition of small pieces.The technicalities of even this stage of the theory mean that a number of problems are left unresolved. These are summarised in David Jones' final chapter. However the fundamental nature of the basic ideas should make this paper a useful stimulus to further work.N. Ashley, 1988, Simplicial T-complexes: a non-abelian version of a theorem of Dold and Kan, Diss. Math. 265.Ronald Brown, Bangor, 1988CONTENTSPreface......................................................................................................5Introduction...............................................................................................61. A class of model categories.................................................................101.1 Categories with models......................................................................101.2. Cone-complexes...............................................................................121.3. Three standard constructions..........................................................141.4. Marked cone-complexes and the category Poly...............................161.5. Consequences of the marked face structure of a polycell................191.6. Subcategories of Poly appropriate as model categories..................232. Posets and shellability.........................................................................262.1. Shelling............................................................................................262.2. The class ET of model categories....................................................292.3. Face posets of S-polycells...............................................................322.4. The equivalence SPoly → SPos.......................................................363. Equivalences of categories of T-complexes.........................................403.1. T-complexes.....................................................................................403.2. The isomorphism ∆TC → ∆₁TC........................................................423.3. Structures and collapsing.................................................................453.4. Particular collapses in Sd X and VX..................................................473.5. The collapse $A(∆^n)$ in Sd $∆^n - p ∆^n$.......................................553.6. The functor $e_ℳ$, from ∆₁T-complexes to ℳ T-complexes...........623.7. The natural equivalence $r_ℳ ∘ e_ℳ ≃1$.....................................633.8. The equivalence of categories.........................................................654. Degeneracy structures in ℳ T-complexes...........................................674.1. An approach to degeneracy structures in ℳ T-complexes...............684.2. Pseudocylinder structures on SC-complexes...................................704.3. Rectifiers on pseudocylinders..........................................................744.4. Degenerate elements in an ℳ T-complex........................................774.5. Functors between categories of T-complexes..................................834.6. Suggested proof of Claims 5.4 and 5.10..........................................865. Comments and possibilities for further work........................................92Appendix. S-shellability of cone-complexes.............................................98Glossary of symbols..............................................................................106References...........................................................................................109Errata Page, line: 5⁴ For: Asley, 1988 Read: Ashley, 1988
LA - eng
KW - polyhedral methods in algebraic topology; shellability of cone-complexes
UR - http://eudml.org/doc/268464
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.