The algebraic theory of compact Lawson semilattices Applications of Galois connections to compact semilattices
Karl Heinrich Hofmann; Albert Stralka
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1976
Access Full Book
topAbstract
topHow to cite
topKarl Heinrich Hofmann, and Albert Stralka. The algebraic theory of compact Lawson semilattices Applications of Galois connections to compact semilattices. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1976. <http://eudml.org/doc/268477>.
@book{KarlHeinrichHofmann1976,
abstract = {CONTENTSIntroduction....................................................................................................................................... 5 List of categories........................................................................................................................ 81. GALOIS CONNECTIONS................................................................................................................... 10 a. The basic theory of Galois connections............................................................................. 10 b. Applications of Galois connections to compact semilattices........................................ 13 c. Supplementary results on Lawson semilattices.............................................................. 162. COMPACT ZERO-DIMENSIONAL SEMILATTICES WITH COMPLETE DUAL............................. 19 a. Dual completeness............................................................................................................... 19 b. The compact closure operator............................................................................................. 21 c. Algebraic and order theoretic characterization of Lawson semilattices....................... 24 d. The functoriality of j, c, m......................................................................................................... 283. THE (RIGHT) REFLECTOR P : CL → D a. The ideal lattice......................................................................................................................... 33 b. The morphism $s_L : L → PL$.............................................................................................. 35 c. The functor P : CL → D............................................................................................................. 36 d. PL as a projective object......................................................................................................... 374. ON THE FINE STRUCTURE OF PL................................................................................................... 42 a. The construction of A(L).......................................................................................................... 42 b. On the geometric structure of PL........................................................................................... 475. EXAMPLES, APPLICATIONS................................................................................................................ 50Bibliography........................................................................................................................................ 54},
author = {Karl Heinrich Hofmann, Albert Stralka},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {The algebraic theory of compact Lawson semilattices Applications of Galois connections to compact semilattices},
url = {http://eudml.org/doc/268477},
year = {1976},
}
TY - BOOK
AU - Karl Heinrich Hofmann
AU - Albert Stralka
TI - The algebraic theory of compact Lawson semilattices Applications of Galois connections to compact semilattices
PY - 1976
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction....................................................................................................................................... 5 List of categories........................................................................................................................ 81. GALOIS CONNECTIONS................................................................................................................... 10 a. The basic theory of Galois connections............................................................................. 10 b. Applications of Galois connections to compact semilattices........................................ 13 c. Supplementary results on Lawson semilattices.............................................................. 162. COMPACT ZERO-DIMENSIONAL SEMILATTICES WITH COMPLETE DUAL............................. 19 a. Dual completeness............................................................................................................... 19 b. The compact closure operator............................................................................................. 21 c. Algebraic and order theoretic characterization of Lawson semilattices....................... 24 d. The functoriality of j, c, m......................................................................................................... 283. THE (RIGHT) REFLECTOR P : CL → D a. The ideal lattice......................................................................................................................... 33 b. The morphism $s_L : L → PL$.............................................................................................. 35 c. The functor P : CL → D............................................................................................................. 36 d. PL as a projective object......................................................................................................... 374. ON THE FINE STRUCTURE OF PL................................................................................................... 42 a. The construction of A(L).......................................................................................................... 42 b. On the geometric structure of PL........................................................................................... 475. EXAMPLES, APPLICATIONS................................................................................................................ 50Bibliography........................................................................................................................................ 54
LA - eng
UR - http://eudml.org/doc/268477
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.