The algebraic theory of compact Lawson semilattices Applications of Galois connections to compact semilattices

Karl Heinrich Hofmann; Albert Stralka

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1976

Abstract

top
CONTENTSIntroduction....................................................................................................................................... 5 List of categories........................................................................................................................ 81. GALOIS CONNECTIONS................................................................................................................... 10 a. The basic theory of Galois connections............................................................................. 10 b. Applications of Galois connections to compact semilattices........................................ 13 c. Supplementary results on Lawson semilattices.............................................................. 162. COMPACT ZERO-DIMENSIONAL SEMILATTICES WITH COMPLETE DUAL............................. 19 a. Dual completeness............................................................................................................... 19 b. The compact closure operator............................................................................................. 21 c. Algebraic and order theoretic characterization of Lawson semilattices....................... 24 d. The functoriality of j, c, m......................................................................................................... 283. THE (RIGHT) REFLECTOR P : CL → D a. The ideal lattice......................................................................................................................... 33 b. The morphism s L : L P L .............................................................................................. 35 c. The functor P : CL → D............................................................................................................. 36 d. PL as a projective object......................................................................................................... 374. ON THE FINE STRUCTURE OF PL................................................................................................... 42 a. The construction of A(L).......................................................................................................... 42 b. On the geometric structure of PL........................................................................................... 475. EXAMPLES, APPLICATIONS................................................................................................................ 50Bibliography........................................................................................................................................ 54

How to cite

top

Karl Heinrich Hofmann, and Albert Stralka. The algebraic theory of compact Lawson semilattices Applications of Galois connections to compact semilattices. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1976. <http://eudml.org/doc/268477>.

@book{KarlHeinrichHofmann1976,
abstract = {CONTENTSIntroduction....................................................................................................................................... 5 List of categories........................................................................................................................ 81. GALOIS CONNECTIONS................................................................................................................... 10 a. The basic theory of Galois connections............................................................................. 10 b. Applications of Galois connections to compact semilattices........................................ 13 c. Supplementary results on Lawson semilattices.............................................................. 162. COMPACT ZERO-DIMENSIONAL SEMILATTICES WITH COMPLETE DUAL............................. 19 a. Dual completeness............................................................................................................... 19 b. The compact closure operator............................................................................................. 21 c. Algebraic and order theoretic characterization of Lawson semilattices....................... 24 d. The functoriality of j, c, m......................................................................................................... 283. THE (RIGHT) REFLECTOR P : CL → D a. The ideal lattice......................................................................................................................... 33 b. The morphism $s_L : L → PL$.............................................................................................. 35 c. The functor P : CL → D............................................................................................................. 36 d. PL as a projective object......................................................................................................... 374. ON THE FINE STRUCTURE OF PL................................................................................................... 42 a. The construction of A(L).......................................................................................................... 42 b. On the geometric structure of PL........................................................................................... 475. EXAMPLES, APPLICATIONS................................................................................................................ 50Bibliography........................................................................................................................................ 54},
author = {Karl Heinrich Hofmann, Albert Stralka},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {The algebraic theory of compact Lawson semilattices Applications of Galois connections to compact semilattices},
url = {http://eudml.org/doc/268477},
year = {1976},
}

TY - BOOK
AU - Karl Heinrich Hofmann
AU - Albert Stralka
TI - The algebraic theory of compact Lawson semilattices Applications of Galois connections to compact semilattices
PY - 1976
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction....................................................................................................................................... 5 List of categories........................................................................................................................ 81. GALOIS CONNECTIONS................................................................................................................... 10 a. The basic theory of Galois connections............................................................................. 10 b. Applications of Galois connections to compact semilattices........................................ 13 c. Supplementary results on Lawson semilattices.............................................................. 162. COMPACT ZERO-DIMENSIONAL SEMILATTICES WITH COMPLETE DUAL............................. 19 a. Dual completeness............................................................................................................... 19 b. The compact closure operator............................................................................................. 21 c. Algebraic and order theoretic characterization of Lawson semilattices....................... 24 d. The functoriality of j, c, m......................................................................................................... 283. THE (RIGHT) REFLECTOR P : CL → D a. The ideal lattice......................................................................................................................... 33 b. The morphism $s_L : L → PL$.............................................................................................. 35 c. The functor P : CL → D............................................................................................................. 36 d. PL as a projective object......................................................................................................... 374. ON THE FINE STRUCTURE OF PL................................................................................................... 42 a. The construction of A(L).......................................................................................................... 42 b. On the geometric structure of PL........................................................................................... 475. EXAMPLES, APPLICATIONS................................................................................................................ 50Bibliography........................................................................................................................................ 54
LA - eng
UR - http://eudml.org/doc/268477
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.