Baire spaces

R. C. Haworth; R. A McCoy

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1977

Abstract

top
CONTENTSIntroduction............................................................................................................ 5I. Basic properties of Baire spaces................................................................... 61. Nowhere dense sets............................................................................................... 62. First and second category sets............................................................................. 83. Baire spaces............................................................................................................. 114. Isolated points and Baire spaces......................................................................... 15II. Concepts related to Baire spaces................................................................ 181. Baire spaces in the strong sense................................................................ 182. Baire category theorem........................................................................................... 193. Complete type properties which imply Baire...................................................... 194. Minimal spaces........................................................................................................ 24III. Characterizations of Baire spaces............................................................... 291. Blumberg type theorems........................................................................................ 292. Covering and filter characterizations.................................................................... 363. Characterizations of Baire spaces involving pseudo-complete spaces....... 374. The Banach-Mazur game........................................................................................ 385. Countably-Baire spaces......................................................................................... 41IV. The dynamics of Baire spaces..................................................................... 441. Images and inverse images of Baire spaces.................................................... 442. Baire space extensions.......................................................................................... 493. Hyperspaces and functions spaces..................................................................... 53V. Products of Baire spaces............................................................................... 561. Finite products.......................................................................................................... 562. Infinite products........................................................................................................ 603. k-Baire spaces.......................................................................................................... 644. Product counterexamples....................................................................................... 69Bibliography........................................................................................................... 72

How to cite

top

R. C. Haworth, and R. A McCoy. Baire spaces. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1977. <http://eudml.org/doc/268479>.

@book{R1977,
abstract = {CONTENTSIntroduction............................................................................................................ 5I. Basic properties of Baire spaces................................................................... 61. Nowhere dense sets............................................................................................... 62. First and second category sets............................................................................. 83. Baire spaces............................................................................................................. 114. Isolated points and Baire spaces......................................................................... 15II. Concepts related to Baire spaces................................................................ 181. Baire spaces in the strong sense................................................................ 182. Baire category theorem........................................................................................... 193. Complete type properties which imply Baire...................................................... 194. Minimal spaces........................................................................................................ 24III. Characterizations of Baire spaces............................................................... 291. Blumberg type theorems........................................................................................ 292. Covering and filter characterizations.................................................................... 363. Characterizations of Baire spaces involving pseudo-complete spaces....... 374. The Banach-Mazur game........................................................................................ 385. Countably-Baire spaces......................................................................................... 41IV. The dynamics of Baire spaces..................................................................... 441. Images and inverse images of Baire spaces.................................................... 442. Baire space extensions.......................................................................................... 493. Hyperspaces and functions spaces..................................................................... 53V. Products of Baire spaces............................................................................... 561. Finite products.......................................................................................................... 562. Infinite products........................................................................................................ 603. k-Baire spaces.......................................................................................................... 644. Product counterexamples....................................................................................... 69Bibliography........................................................................................................... 72},
author = {R. C. Haworth, R. A McCoy},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Baire spaces},
url = {http://eudml.org/doc/268479},
year = {1977},
}

TY - BOOK
AU - R. C. Haworth
AU - R. A McCoy
TI - Baire spaces
PY - 1977
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction............................................................................................................ 5I. Basic properties of Baire spaces................................................................... 61. Nowhere dense sets............................................................................................... 62. First and second category sets............................................................................. 83. Baire spaces............................................................................................................. 114. Isolated points and Baire spaces......................................................................... 15II. Concepts related to Baire spaces................................................................ 181. Baire spaces in the strong sense................................................................ 182. Baire category theorem........................................................................................... 193. Complete type properties which imply Baire...................................................... 194. Minimal spaces........................................................................................................ 24III. Characterizations of Baire spaces............................................................... 291. Blumberg type theorems........................................................................................ 292. Covering and filter characterizations.................................................................... 363. Characterizations of Baire spaces involving pseudo-complete spaces....... 374. The Banach-Mazur game........................................................................................ 385. Countably-Baire spaces......................................................................................... 41IV. The dynamics of Baire spaces..................................................................... 441. Images and inverse images of Baire spaces.................................................... 442. Baire space extensions.......................................................................................... 493. Hyperspaces and functions spaces..................................................................... 53V. Products of Baire spaces............................................................................... 561. Finite products.......................................................................................................... 562. Infinite products........................................................................................................ 603. k-Baire spaces.......................................................................................................... 644. Product counterexamples....................................................................................... 69Bibliography........................................................................................................... 72
LA - eng
UR - http://eudml.org/doc/268479
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.