Completeness properties of classical theories of finite type and the normal form theorem
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1983
Access Full Book
topAbstract
topHow to cite
topPeter Päppinghaus. Completeness properties of classical theories of finite type and the normal form theorem. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1983. <http://eudml.org/doc/268480>.
@book{PeterPäppinghaus1983,
abstract = {CONTENTSIntroduction........................................................................................................................................................................................................................50. Terminology and preliminaries......................................................................................................................................................................................121. The extent of cut elimination by absorption..................................................................................................................................................................172. ∏¹-completeness of second order logic and a new proof of the normal form theorem.................................................................................................243. Weak models and proper three-valued models of second order theories....................................................................................................................314. Model theoretic proofs of the normal form theorem for higher order systems: comparison with the literature..............................................................395. Completeness of the systems $JT^n$ and $∏^n$-completeness of $∑^n$-theories.....................................................................................................436. ∀-analytical completeness of the systems $JPRE^n$ and poor completeness of the theories $PRE^n$ of primitive recursive equations....................487. ∀¹ ∃⁰-completeness of PRE² and König’s Lemma for primitive recursive 0-1-trees......................................................................................................56References.......................................................................................................................................................................................................................62},
author = {Peter Päppinghaus},
keywords = {completeness properties of classical theories of finite type; normal form theorem; type theory; cut elemination; absorption; joker theory},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Completeness properties of classical theories of finite type and the normal form theorem},
url = {http://eudml.org/doc/268480},
year = {1983},
}
TY - BOOK
AU - Peter Päppinghaus
TI - Completeness properties of classical theories of finite type and the normal form theorem
PY - 1983
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction........................................................................................................................................................................................................................50. Terminology and preliminaries......................................................................................................................................................................................121. The extent of cut elimination by absorption..................................................................................................................................................................172. ∏¹-completeness of second order logic and a new proof of the normal form theorem.................................................................................................243. Weak models and proper three-valued models of second order theories....................................................................................................................314. Model theoretic proofs of the normal form theorem for higher order systems: comparison with the literature..............................................................395. Completeness of the systems $JT^n$ and $∏^n$-completeness of $∑^n$-theories.....................................................................................................436. ∀-analytical completeness of the systems $JPRE^n$ and poor completeness of the theories $PRE^n$ of primitive recursive equations....................487. ∀¹ ∃⁰-completeness of PRE² and König’s Lemma for primitive recursive 0-1-trees......................................................................................................56References.......................................................................................................................................................................................................................62
LA - eng
KW - completeness properties of classical theories of finite type; normal form theorem; type theory; cut elemination; absorption; joker theory
UR - http://eudml.org/doc/268480
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.