Completeness properties of classical theories of finite type and the normal form theorem

Peter Päppinghaus

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1983

Abstract

top
CONTENTSIntroduction........................................................................................................................................................................................................................50. Terminology and preliminaries......................................................................................................................................................................................121. The extent of cut elimination by absorption..................................................................................................................................................................172. ∏¹-completeness of second order logic and a new proof of the normal form theorem.................................................................................................243. Weak models and proper three-valued models of second order theories....................................................................................................................314. Model theoretic proofs of the normal form theorem for higher order systems: comparison with the literature..............................................................395. Completeness of the systems J T n and n -completeness of n -theories.....................................................................................................436. ∀-analytical completeness of the systems J P R E n and poor completeness of the theories P R E n of primitive recursive equations....................487. ∀¹ ∃⁰-completeness of PRE² and König’s Lemma for primitive recursive 0-1-trees......................................................................................................56References.......................................................................................................................................................................................................................62

How to cite

top

Peter Päppinghaus. Completeness properties of classical theories of finite type and the normal form theorem. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1983. <http://eudml.org/doc/268480>.

@book{PeterPäppinghaus1983,
abstract = {CONTENTSIntroduction........................................................................................................................................................................................................................50. Terminology and preliminaries......................................................................................................................................................................................121. The extent of cut elimination by absorption..................................................................................................................................................................172. ∏¹-completeness of second order logic and a new proof of the normal form theorem.................................................................................................243. Weak models and proper three-valued models of second order theories....................................................................................................................314. Model theoretic proofs of the normal form theorem for higher order systems: comparison with the literature..............................................................395. Completeness of the systems $JT^n$ and $∏^n$-completeness of $∑^n$-theories.....................................................................................................436. ∀-analytical completeness of the systems $JPRE^n$ and poor completeness of the theories $PRE^n$ of primitive recursive equations....................487. ∀¹ ∃⁰-completeness of PRE² and König’s Lemma for primitive recursive 0-1-trees......................................................................................................56References.......................................................................................................................................................................................................................62},
author = {Peter Päppinghaus},
keywords = {completeness properties of classical theories of finite type; normal form theorem; type theory; cut elemination; absorption; joker theory},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Completeness properties of classical theories of finite type and the normal form theorem},
url = {http://eudml.org/doc/268480},
year = {1983},
}

TY - BOOK
AU - Peter Päppinghaus
TI - Completeness properties of classical theories of finite type and the normal form theorem
PY - 1983
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction........................................................................................................................................................................................................................50. Terminology and preliminaries......................................................................................................................................................................................121. The extent of cut elimination by absorption..................................................................................................................................................................172. ∏¹-completeness of second order logic and a new proof of the normal form theorem.................................................................................................243. Weak models and proper three-valued models of second order theories....................................................................................................................314. Model theoretic proofs of the normal form theorem for higher order systems: comparison with the literature..............................................................395. Completeness of the systems $JT^n$ and $∏^n$-completeness of $∑^n$-theories.....................................................................................................436. ∀-analytical completeness of the systems $JPRE^n$ and poor completeness of the theories $PRE^n$ of primitive recursive equations....................487. ∀¹ ∃⁰-completeness of PRE² and König’s Lemma for primitive recursive 0-1-trees......................................................................................................56References.......................................................................................................................................................................................................................62
LA - eng
KW - completeness properties of classical theories of finite type; normal form theorem; type theory; cut elemination; absorption; joker theory
UR - http://eudml.org/doc/268480
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.