Displaying similar documents to “Completeness properties of classical theories of finite type and the normal form theorem”

On sentences provable in impredicative extensions of theories

Zygmunt Ratajczyk

Similarity:

CONTENTS0. Introduction.......................................................................... 51. Preliminaries............................................................................... 72. Basic facts to be used in the sequel....................................... 113. Predicates OD(.,.) and CL(.,.).................................................... 174. Predicate Sels............................................................................. 185. Strong n 1 -collection...........................................................

The n m -propositional calculus

Carlos Gallardo, Alicia Ziliani (2015)

Mathematica Bohemica

Similarity:

T. Almada and J. Vaz de Carvalho (2001) stated the problem to investigate if these Łukasiewicz algebras are algebras of some logic system. In this article an affirmative answer is given and the n m -propositional calculus, denoted by n m , is introduced in terms of the binary connectives (implication), (standard implication), (conjunction), (disjunction) and the unary ones f (negation) and D i , 1 i n - 1 (generalized Moisil operators). It is proved that n m belongs to the class of standard systems...

Propositional extensions of L ω 1 ω

Richard Gostanian, Karel Hrbacek

Similarity:

CONTENTS0. Preliminaries....................................................................... 71. Adding propositional connectives to L ω 1 ω ............... 82. The propositional part of L ω 1 ω (S)............................. 103. The operation S and the Boolean algebra B S ............... 114. General model-theoretic properties of L ω 1 ω (S)...... 175. Hanf number computations...................................................... 226. Negative results for L ω 1 ω (S)...........................................

On the distribution of consecutive square-free primitive roots modulo p

Huaning Liu, Hui Dong (2015)

Czechoslovak Mathematical Journal

Similarity:

A positive integer n is called a square-free number if it is not divisible by a perfect square except 1 . Let p be an odd prime. For n with ( n , p ) = 1 , the smallest positive integer f such that n f 1 ( mod p ) is called the exponent of n modulo p . If the exponent of n modulo p is p - 1 , then n is called a primitive root mod p . Let A ( n ) be the characteristic function of the square-free primitive roots modulo p . In this paper we study the distribution n x A ( n ) A ( n + 1 ) , and give an asymptotic formula by using properties of character...

Enveloping algebras of Slodowy slices and the Joseph ideal

Alexander Premet (2007)

Journal of the European Mathematical Society

Similarity:

Let G be a simple algebraic group over an algebraically closed field 𝕜 of characteristic 0, and 𝔤 = Lie G . Let ( e , h , f ) be an 𝔰 𝔩 2 -triple in 𝔤 with e being a long root vector in 𝔤 . Let ( · , · ) be the G -invariant bilinear form on 𝔤 with ( e , f ) = 1 and let χ 𝔤 * be such that χ ( x ) = ( e , x ) for all x 𝔤 . Let 𝒮 be the Slodowy slice at e through the adjoint orbit of e and let H be the enveloping algebra of 𝒮 ; see [31]. In this article we give an explicit presentation of H by generators and relations. As a consequence we deduce that H contains...

On the least common multiple of Lucas subsequences

Shigeki Akiyama, Florian Luca (2013)

Acta Arithmetica

Similarity:

We compare the growth of the least common multiple of the numbers u a 1 , . . . , u a n and | u a 1 u a n | , where ( u n ) n 0 is a Lucas sequence and ( a n ) n 0 is some sequence of positive integers.

On path-quasar Ramsey numbers

Binlong Li, Bo Ning (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let G 1 and G 2 be two given graphs. The Ramsey number R ( G 1 , G 2 ) is the least integer r such that for every graph G on r vertices, either G contains a G 1 or G ¯ contains a G 2 . Parsons gave a recursive formula to determine the values of R ( P n , K 1 , m ) , where P n is a path on n vertices and K 1 , m is a star on m + 1 vertices. In this note, we study the Ramsey numbers R ( P n , K 1 F m ) , where F m is a linear forest on m vertices. We determine the exact values of R ( P n , K 1 F m ) for the cases m n and m 2 n , and for the case that F m has no odd component. Moreover, we...

C * -points vs P -points and P -points

Jorge Martinez, Warren Wm. McGovern (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In a Tychonoff space X , the point p X is called a C * -point if every real-valued continuous function on C { p } can be extended continuously to p . Every point in an extremally disconnected space is a C * -point. A classic example is the space 𝐖 * = ω 1 + 1 consisting of the countable ordinals together with ω 1 . The point ω 1 is known to be a C * -point as well as a P -point. We supply a characterization of C * -points in totally ordered spaces. The remainder of our time is aimed at studying when a point in a product space...