On reducible trinomials

Andrzej Schinzel

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1993

Abstract

top
CONTENTSIntroduction and the statement of results.................................................................5Part I. Reducibility over function fields...................................................................14  1. Auxiliary results from the theory of algebraic functions....................................14  2. Determination of the range of Tables 1 and 2 (Lemmas 3-27).........................15  3. Determination of the content of Table 1 (Lemmas 28-40)................................38  4. Determination of the content of Table 2 (Lemmas 41-48)................................46  5. Proof of Theorems 1, 2 and 3..........................................................................55  6. Proof of Theorems 4 and 5..............................................................................58Part II. Reducibility over algebraic number fields and, in particular, over ℚ............61  7. Proof of Theorem 6 and of the subsequent remarks.......................................61  8. Deduction of Consequences 1-3 from Conjecture...........................................65  9. Proof of Theorems 7 and 8..............................................................................66  10. Proof of Theorem 9 and of Corollary 1..........................................................68  11. Proof of Theorem 10 and of Corollary 2........................................................75References............................................................................................................821991 Mathematics Subject Classification: 12E05, 12E10.

How to cite

top

Andrzej Schinzel. On reducible trinomials. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1993. <http://eudml.org/doc/268481>.

@book{AndrzejSchinzel1993,
abstract = {CONTENTSIntroduction and the statement of results.................................................................5Part I. Reducibility over function fields...................................................................14  1. Auxiliary results from the theory of algebraic functions....................................14  2. Determination of the range of Tables 1 and 2 (Lemmas 3-27).........................15  3. Determination of the content of Table 1 (Lemmas 28-40)................................38  4. Determination of the content of Table 2 (Lemmas 41-48)................................46  5. Proof of Theorems 1, 2 and 3..........................................................................55  6. Proof of Theorems 4 and 5..............................................................................58Part II. Reducibility over algebraic number fields and, in particular, over ℚ............61  7. Proof of Theorem 6 and of the subsequent remarks.......................................61  8. Deduction of Consequences 1-3 from Conjecture...........................................65  9. Proof of Theorems 7 and 8..............................................................................66  10. Proof of Theorem 9 and of Corollary 1..........................................................68  11. Proof of Theorem 10 and of Corollary 2........................................................75References............................................................................................................821991 Mathematics Subject Classification: 12E05, 12E10.},
author = {Andrzej Schinzel},
keywords = {polynomial; irreducibility; Capelli; trinomial},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {On reducible trinomials},
url = {http://eudml.org/doc/268481},
year = {1993},
}

TY - BOOK
AU - Andrzej Schinzel
TI - On reducible trinomials
PY - 1993
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction and the statement of results.................................................................5Part I. Reducibility over function fields...................................................................14  1. Auxiliary results from the theory of algebraic functions....................................14  2. Determination of the range of Tables 1 and 2 (Lemmas 3-27).........................15  3. Determination of the content of Table 1 (Lemmas 28-40)................................38  4. Determination of the content of Table 2 (Lemmas 41-48)................................46  5. Proof of Theorems 1, 2 and 3..........................................................................55  6. Proof of Theorems 4 and 5..............................................................................58Part II. Reducibility over algebraic number fields and, in particular, over ℚ............61  7. Proof of Theorem 6 and of the subsequent remarks.......................................61  8. Deduction of Consequences 1-3 from Conjecture...........................................65  9. Proof of Theorems 7 and 8..............................................................................66  10. Proof of Theorem 9 and of Corollary 1..........................................................68  11. Proof of Theorem 10 and of Corollary 2........................................................75References............................................................................................................821991 Mathematics Subject Classification: 12E05, 12E10.
LA - eng
KW - polynomial; irreducibility; Capelli; trinomial
UR - http://eudml.org/doc/268481
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.