Torus embeddings, polyhedra, k*-actions and homology

Jerzy Jurkiewicz

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1985

Abstract

top
CONTENTSIntroduction..............................................................................................51. General torus embeddings...................................................................7  1.1. Sets of subrings..............................................................................7  1.2. Complex of cones and torus embeddings. Basic properties and notation...............8  1.3. Jets of 1-p.s. at 0...........................................................................12  1.4. An application of torus embeddings. Desigularization of plane cusps by blowings up of the plane...............14  1.5. Some G m -actions on torus embedding...................................182. Complex torus embeddings. Real and lion-negative parts..................20  2.1. Introduction...................................................................................20  2.2. The real non-negative part of the variety X Σ ...........................21  2.3. Bijection of X σ 0 onto σ̆......................................................29  2.4. Real part of X Σ . Reflexions......................................................353. Projective torus embeddings..............................................................37  3.1. Polyhedra......................................................................................37  3.2. Morse function...............................................................................41  3.3. Filtrations, cycles of orbits and projectivity.....................................464. Homology............................................................................................50  4.1. Poincaré polynomial......................................................................50  4.2. Chow ring and l-adic cohomology..................................................51  4.3. Cohomology ring of X Σ ( R ) with coefficients in Z/2Z..................52  4.4. Orientation.....................................................................................55  4.5. The 2-dimensional case, homology with integral coefficients.........56References.............................................................................................62Index.......................................................................................................64

How to cite

top

Jerzy Jurkiewicz. Torus embeddings, polyhedra, k*-actions and homology. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1985. <http://eudml.org/doc/268485>.

@book{JerzyJurkiewicz1985,
abstract = {CONTENTSIntroduction..............................................................................................51. General torus embeddings...................................................................7  1.1. Sets of subrings..............................................................................7  1.2. Complex of cones and torus embeddings. Basic properties and notation...............8  1.3. Jets of 1-p.s. at 0...........................................................................12  1.4. An application of torus embeddings. Desigularization of plane cusps by blowings up of the plane...............14  1.5. Some $G_m$-actions on torus embedding...................................182. Complex torus embeddings. Real and lion-negative parts..................20  2.1. Introduction...................................................................................20  2.2. The real non-negative part of the variety $X_Σ$...........................21  2.3. Bijection of $X_σ^\{≥0\}$ onto σ̆......................................................29  2.4. Real part of $X_Σ$. Reflexions......................................................353. Projective torus embeddings..............................................................37  3.1. Polyhedra......................................................................................37  3.2. Morse function...............................................................................41  3.3. Filtrations, cycles of orbits and projectivity.....................................464. Homology............................................................................................50  4.1. Poincaré polynomial......................................................................50  4.2. Chow ring and l-adic cohomology..................................................51  4.3. Cohomology ring of $X_Σ(R)$ with coefficients in Z/2Z..................52  4.4. Orientation.....................................................................................55  4.5. The 2-dimensional case, homology with integral coefficients.........56References.............................................................................................62Index.......................................................................................................64},
author = {Jerzy Jurkiewicz},
keywords = {Chow ring; Morse function; classes of cycles on a torus embedding},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Torus embeddings, polyhedra, k*-actions and homology},
url = {http://eudml.org/doc/268485},
year = {1985},
}

TY - BOOK
AU - Jerzy Jurkiewicz
TI - Torus embeddings, polyhedra, k*-actions and homology
PY - 1985
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction..............................................................................................51. General torus embeddings...................................................................7  1.1. Sets of subrings..............................................................................7  1.2. Complex of cones and torus embeddings. Basic properties and notation...............8  1.3. Jets of 1-p.s. at 0...........................................................................12  1.4. An application of torus embeddings. Desigularization of plane cusps by blowings up of the plane...............14  1.5. Some $G_m$-actions on torus embedding...................................182. Complex torus embeddings. Real and lion-negative parts..................20  2.1. Introduction...................................................................................20  2.2. The real non-negative part of the variety $X_Σ$...........................21  2.3. Bijection of $X_σ^{≥0}$ onto σ̆......................................................29  2.4. Real part of $X_Σ$. Reflexions......................................................353. Projective torus embeddings..............................................................37  3.1. Polyhedra......................................................................................37  3.2. Morse function...............................................................................41  3.3. Filtrations, cycles of orbits and projectivity.....................................464. Homology............................................................................................50  4.1. Poincaré polynomial......................................................................50  4.2. Chow ring and l-adic cohomology..................................................51  4.3. Cohomology ring of $X_Σ(R)$ with coefficients in Z/2Z..................52  4.4. Orientation.....................................................................................55  4.5. The 2-dimensional case, homology with integral coefficients.........56References.............................................................................................62Index.......................................................................................................64
LA - eng
KW - Chow ring; Morse function; classes of cycles on a torus embedding
UR - http://eudml.org/doc/268485
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.