Torus embeddings, polyhedra, k*-actions and homology
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1985
Access Full Book
topAbstract
topHow to cite
topJerzy Jurkiewicz. Torus embeddings, polyhedra, k*-actions and homology. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1985. <http://eudml.org/doc/268485>.
@book{JerzyJurkiewicz1985,
abstract = {CONTENTSIntroduction..............................................................................................51. General torus embeddings...................................................................7 1.1. Sets of subrings..............................................................................7 1.2. Complex of cones and torus embeddings. Basic properties and notation...............8 1.3. Jets of 1-p.s. at 0...........................................................................12 1.4. An application of torus embeddings. Desigularization of plane cusps by blowings up of the plane...............14 1.5. Some $G_m$-actions on torus embedding...................................182. Complex torus embeddings. Real and lion-negative parts..................20 2.1. Introduction...................................................................................20 2.2. The real non-negative part of the variety $X_Σ$...........................21 2.3. Bijection of $X_σ^\{≥0\}$ onto σ̆......................................................29 2.4. Real part of $X_Σ$. Reflexions......................................................353. Projective torus embeddings..............................................................37 3.1. Polyhedra......................................................................................37 3.2. Morse function...............................................................................41 3.3. Filtrations, cycles of orbits and projectivity.....................................464. Homology............................................................................................50 4.1. Poincaré polynomial......................................................................50 4.2. Chow ring and l-adic cohomology..................................................51 4.3. Cohomology ring of $X_Σ(R)$ with coefficients in Z/2Z..................52 4.4. Orientation.....................................................................................55 4.5. The 2-dimensional case, homology with integral coefficients.........56References.............................................................................................62Index.......................................................................................................64},
author = {Jerzy Jurkiewicz},
keywords = {Chow ring; Morse function; classes of cycles on a torus embedding},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Torus embeddings, polyhedra, k*-actions and homology},
url = {http://eudml.org/doc/268485},
year = {1985},
}
TY - BOOK
AU - Jerzy Jurkiewicz
TI - Torus embeddings, polyhedra, k*-actions and homology
PY - 1985
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction..............................................................................................51. General torus embeddings...................................................................7 1.1. Sets of subrings..............................................................................7 1.2. Complex of cones and torus embeddings. Basic properties and notation...............8 1.3. Jets of 1-p.s. at 0...........................................................................12 1.4. An application of torus embeddings. Desigularization of plane cusps by blowings up of the plane...............14 1.5. Some $G_m$-actions on torus embedding...................................182. Complex torus embeddings. Real and lion-negative parts..................20 2.1. Introduction...................................................................................20 2.2. The real non-negative part of the variety $X_Σ$...........................21 2.3. Bijection of $X_σ^{≥0}$ onto σ̆......................................................29 2.4. Real part of $X_Σ$. Reflexions......................................................353. Projective torus embeddings..............................................................37 3.1. Polyhedra......................................................................................37 3.2. Morse function...............................................................................41 3.3. Filtrations, cycles of orbits and projectivity.....................................464. Homology............................................................................................50 4.1. Poincaré polynomial......................................................................50 4.2. Chow ring and l-adic cohomology..................................................51 4.3. Cohomology ring of $X_Σ(R)$ with coefficients in Z/2Z..................52 4.4. Orientation.....................................................................................55 4.5. The 2-dimensional case, homology with integral coefficients.........56References.............................................................................................62Index.......................................................................................................64
LA - eng
KW - Chow ring; Morse function; classes of cycles on a torus embedding
UR - http://eudml.org/doc/268485
ER -
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.