"Abstract logics" and "Classical abstract logics"

D. J. Brown; R. Suszko; S. L. Bloom; D. J. Brown

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1973

Abstract

top
CONTENTSPreface......................................................................................................................................................... 5ABSTRACT LOGICS (by D. J. Brown and E. Suszko)Introduction.................................................................................................................................................. 9I. Elementary properties of closure systems and closure operations............................................. 10II. Some properties of closure operators and closure systems....................................................... 12III. Basic concepts of closure spaces.................................................................................................... 14IV. Galois connections and dual spaces............................................................................................... 16V. Abstract logics........................................................................................................................................ 19VI. Projective generation of abstract logics........................................................................................... 20VII. Inductive generation of abstract logics............................................................................................ 23VIII. Logical congruences and bi-logical morphisms......................................................................... 24IX. The structure of Θ ....................................................................................................................... 26X. Logical matrices.................................................................................................................................... 28XI. Generating logics by matrices .......................................................................................................... 29XII. Structurality and invariance................................................................................................................ 31XIII. Adequacy and completeness........................................................................................................... 33XIV. Some applications to mathematical logic..................................................................................... 35References.................................................................................................................................................. 40CLASSICAL ABSTRACT LOGICS (by S.L. Bloom and D. J. Brown)1. Introduction............................................................................................................................................. 432. Preliminaries.......................................................................................................................................... 433. The category of classical logics.......................................................................................................... 454. The characterization theorems........................................................................................................... 48References.................................................................................................................................................. 52

How to cite

top

D. J. Brown, et al. "Abstract logics" and "Classical abstract logics". Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1973. <http://eudml.org/doc/268498>.

@book{D1973,
abstract = {CONTENTSPreface......................................................................................................................................................... 5ABSTRACT LOGICS (by D. J. Brown and E. Suszko)Introduction.................................................................................................................................................. 9I. Elementary properties of closure systems and closure operations............................................. 10II. Some properties of closure operators and closure systems....................................................... 12III. Basic concepts of closure spaces.................................................................................................... 14IV. Galois connections and dual spaces............................................................................................... 16V. Abstract logics........................................................................................................................................ 19VI. Projective generation of abstract logics........................................................................................... 20VII. Inductive generation of abstract logics............................................................................................ 23VIII. Logical congruences and bi-logical morphisms......................................................................... 24IX. The structure of $Θ_ℒ$....................................................................................................................... 26X. Logical matrices.................................................................................................................................... 28XI. Generating logics by matrices .......................................................................................................... 29XII. Structurality and invariance................................................................................................................ 31XIII. Adequacy and completeness........................................................................................................... 33XIV. Some applications to mathematical logic..................................................................................... 35References.................................................................................................................................................. 40CLASSICAL ABSTRACT LOGICS (by S.L. Bloom and D. J. Brown)1. Introduction............................................................................................................................................. 432. Preliminaries.......................................................................................................................................... 433. The category of classical logics.......................................................................................................... 454. The characterization theorems........................................................................................................... 48References.................................................................................................................................................. 52},
author = {D. J. Brown, R. Suszko, S. L. Bloom, D. J. Brown},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {"Abstract logics" and "Classical abstract logics"},
url = {http://eudml.org/doc/268498},
year = {1973},
}

TY - BOOK
AU - D. J. Brown
AU - R. Suszko
AU - S. L. Bloom
AU - D. J. Brown
TI - "Abstract logics" and "Classical abstract logics"
PY - 1973
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSPreface......................................................................................................................................................... 5ABSTRACT LOGICS (by D. J. Brown and E. Suszko)Introduction.................................................................................................................................................. 9I. Elementary properties of closure systems and closure operations............................................. 10II. Some properties of closure operators and closure systems....................................................... 12III. Basic concepts of closure spaces.................................................................................................... 14IV. Galois connections and dual spaces............................................................................................... 16V. Abstract logics........................................................................................................................................ 19VI. Projective generation of abstract logics........................................................................................... 20VII. Inductive generation of abstract logics............................................................................................ 23VIII. Logical congruences and bi-logical morphisms......................................................................... 24IX. The structure of $Θ_ℒ$....................................................................................................................... 26X. Logical matrices.................................................................................................................................... 28XI. Generating logics by matrices .......................................................................................................... 29XII. Structurality and invariance................................................................................................................ 31XIII. Adequacy and completeness........................................................................................................... 33XIV. Some applications to mathematical logic..................................................................................... 35References.................................................................................................................................................. 40CLASSICAL ABSTRACT LOGICS (by S.L. Bloom and D. J. Brown)1. Introduction............................................................................................................................................. 432. Preliminaries.......................................................................................................................................... 433. The category of classical logics.......................................................................................................... 454. The characterization theorems........................................................................................................... 48References.................................................................................................................................................. 52
LA - eng
UR - http://eudml.org/doc/268498
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.