Zariski surfaces
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1983
Access Full Book
topAbstract
topHow to cite
topPiotr Blass. Zariski surfaces. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1983. <http://eudml.org/doc/268513>.
@book{PiotrBlass1983,
abstract = {CONTENTSAcknowledgements...................................................................................................5Introduction..............................................................................................................6Notations..................................................................................................................8Chapter I. Zariski surfaces: definition and general properties................................10Chapter II. The theory of adjoints..........................................................................14 Introduction..........................................................................................................14 §1. Behaviour of $ω_X$ under restriction to open subschemes............................15 §2. Behaviour of $ω_X$ under certain birational maps..........................................16 §3. Affine case, adjoints........................................................................................16 §4. Projective case................................................................................................20 §5. Theory of l-adjoints for l ≥ 1 (an outline).........................................................24 §6. Valuation theory for differentials.....................................................................25Chapter III. An example relating to a question of O. Zariski...................................28 Introduction..........................................................................................................28 Part 1. Equation of the surface, singularities in characteristic 2..........................29 Part 2. .................................................................................................................33 Part 3. The singularity of F̅ at infinity....................................................................44 §1. Introductory remarks...................................................................................45 §2. Resolution of the singularity at infinity.........................................................47 §3. Behaviour of differentials at infinity under the resolution.............................52 Part 4. Conclusion................................................................................................57 Part 5. Appendix...................................................................................................58Chapter IV. Generic Zariski surfaces..........................................................................64Chapter V. Richness of the class of Zariski surfaces.................................................76References................................................................................................................80},
author = {Piotr Blass},
keywords = {characteristic p; rationality of Zariski surfaces; generic Zariski surface; rank of Neron-Severi group; adjoints; multiadjoints; genus},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Zariski surfaces},
url = {http://eudml.org/doc/268513},
year = {1983},
}
TY - BOOK
AU - Piotr Blass
TI - Zariski surfaces
PY - 1983
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSAcknowledgements...................................................................................................5Introduction..............................................................................................................6Notations..................................................................................................................8Chapter I. Zariski surfaces: definition and general properties................................10Chapter II. The theory of adjoints..........................................................................14 Introduction..........................................................................................................14 §1. Behaviour of $ω_X$ under restriction to open subschemes............................15 §2. Behaviour of $ω_X$ under certain birational maps..........................................16 §3. Affine case, adjoints........................................................................................16 §4. Projective case................................................................................................20 §5. Theory of l-adjoints for l ≥ 1 (an outline).........................................................24 §6. Valuation theory for differentials.....................................................................25Chapter III. An example relating to a question of O. Zariski...................................28 Introduction..........................................................................................................28 Part 1. Equation of the surface, singularities in characteristic 2..........................29 Part 2. .................................................................................................................33 Part 3. The singularity of F̅ at infinity....................................................................44 §1. Introductory remarks...................................................................................45 §2. Resolution of the singularity at infinity.........................................................47 §3. Behaviour of differentials at infinity under the resolution.............................52 Part 4. Conclusion................................................................................................57 Part 5. Appendix...................................................................................................58Chapter IV. Generic Zariski surfaces..........................................................................64Chapter V. Richness of the class of Zariski surfaces.................................................76References................................................................................................................80
LA - eng
KW - characteristic p; rationality of Zariski surfaces; generic Zariski surface; rank of Neron-Severi group; adjoints; multiadjoints; genus
UR - http://eudml.org/doc/268513
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.