An axiomatics of non-Desarguean geometry based on the half-plane as the primitive notion

A. Śniatycki

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1968

Abstract

top
CONTENTSIntroduction................................................................................................................................................. 5PART I1. Axioms of Boolean algebra................................................................................................................. 62. Half-planes and their axioms.............................................................................................................. 73. The line.................................................................................................................................................... 84. Properties of the net S 3 ................................................................................................................. 105. Properties of the net S 4 ................................................................................................................. 126. Pseudopoints......................................................................................................................................... 157. The ordering of pseudopoints............................................................................................................. 188. The points............................................................................................................................................... 209. Continuity axiom..................................................................................................................................... 22PART II1. Axioms..................................................................................................................................................... 262. Definitions and corollaries................................................................................................................... 273. Convex of a set....................................................................................................................................... 284. Properties of relations of betweenness and of being parallel...................................................... 295. Hodograph.............................................................................................................................................. 336. Jaśkowski’s theorem............................................................................................................................ 37Inferences.................................................................................................................................................... 42

How to cite

top

A. Śniatycki. An axiomatics of non-Desarguean geometry based on the half-plane as the primitive notion. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1968. <http://eudml.org/doc/268515>.

@book{A1968,
abstract = {CONTENTSIntroduction................................................................................................................................................. 5PART I1. Axioms of Boolean algebra................................................................................................................. 62. Half-planes and their axioms.............................................................................................................. 73. The line.................................................................................................................................................... 84. Properties of the net $S_3$................................................................................................................. 105. Properties of the net $S_4$................................................................................................................. 126. Pseudopoints......................................................................................................................................... 157. The ordering of pseudopoints............................................................................................................. 188. The points............................................................................................................................................... 209. Continuity axiom..................................................................................................................................... 22PART II1. Axioms..................................................................................................................................................... 262. Definitions and corollaries................................................................................................................... 273. Convex of a set....................................................................................................................................... 284. Properties of relations of betweenness and of being parallel...................................................... 295. Hodograph.............................................................................................................................................. 336. Jaśkowski’s theorem............................................................................................................................ 37Inferences.................................................................................................................................................... 42},
author = {A. Śniatycki},
keywords = {foundations of geometry},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {An axiomatics of non-Desarguean geometry based on the half-plane as the primitive notion},
url = {http://eudml.org/doc/268515},
year = {1968},
}

TY - BOOK
AU - A. Śniatycki
TI - An axiomatics of non-Desarguean geometry based on the half-plane as the primitive notion
PY - 1968
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction................................................................................................................................................. 5PART I1. Axioms of Boolean algebra................................................................................................................. 62. Half-planes and their axioms.............................................................................................................. 73. The line.................................................................................................................................................... 84. Properties of the net $S_3$................................................................................................................. 105. Properties of the net $S_4$................................................................................................................. 126. Pseudopoints......................................................................................................................................... 157. The ordering of pseudopoints............................................................................................................. 188. The points............................................................................................................................................... 209. Continuity axiom..................................................................................................................................... 22PART II1. Axioms..................................................................................................................................................... 262. Definitions and corollaries................................................................................................................... 273. Convex of a set....................................................................................................................................... 284. Properties of relations of betweenness and of being parallel...................................................... 295. Hodograph.............................................................................................................................................. 336. Jaśkowski’s theorem............................................................................................................................ 37Inferences.................................................................................................................................................... 42
LA - eng
KW - foundations of geometry
UR - http://eudml.org/doc/268515
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.