An axiomatics of non-Desarguean geometry based on the half-plane as the primitive notion
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1968
Access Full Book
topAbstract
topHow to cite
topA. Śniatycki. An axiomatics of non-Desarguean geometry based on the half-plane as the primitive notion. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1968. <http://eudml.org/doc/268515>.
@book{A1968,
abstract = {CONTENTSIntroduction................................................................................................................................................. 5PART I1. Axioms of Boolean algebra................................................................................................................. 62. Half-planes and their axioms.............................................................................................................. 73. The line.................................................................................................................................................... 84. Properties of the net $S_3$................................................................................................................. 105. Properties of the net $S_4$................................................................................................................. 126. Pseudopoints......................................................................................................................................... 157. The ordering of pseudopoints............................................................................................................. 188. The points............................................................................................................................................... 209. Continuity axiom..................................................................................................................................... 22PART II1. Axioms..................................................................................................................................................... 262. Definitions and corollaries................................................................................................................... 273. Convex of a set....................................................................................................................................... 284. Properties of relations of betweenness and of being parallel...................................................... 295. Hodograph.............................................................................................................................................. 336. Jaśkowski’s theorem............................................................................................................................ 37Inferences.................................................................................................................................................... 42},
author = {A. Śniatycki},
keywords = {foundations of geometry},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {An axiomatics of non-Desarguean geometry based on the half-plane as the primitive notion},
url = {http://eudml.org/doc/268515},
year = {1968},
}
TY - BOOK
AU - A. Śniatycki
TI - An axiomatics of non-Desarguean geometry based on the half-plane as the primitive notion
PY - 1968
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction................................................................................................................................................. 5PART I1. Axioms of Boolean algebra................................................................................................................. 62. Half-planes and their axioms.............................................................................................................. 73. The line.................................................................................................................................................... 84. Properties of the net $S_3$................................................................................................................. 105. Properties of the net $S_4$................................................................................................................. 126. Pseudopoints......................................................................................................................................... 157. The ordering of pseudopoints............................................................................................................. 188. The points............................................................................................................................................... 209. Continuity axiom..................................................................................................................................... 22PART II1. Axioms..................................................................................................................................................... 262. Definitions and corollaries................................................................................................................... 273. Convex of a set....................................................................................................................................... 284. Properties of relations of betweenness and of being parallel...................................................... 295. Hodograph.............................................................................................................................................. 336. Jaśkowski’s theorem............................................................................................................................ 37Inferences.................................................................................................................................................... 42
LA - eng
KW - foundations of geometry
UR - http://eudml.org/doc/268515
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.