Displaying similar documents to “An axiomatics of non-Desarguean geometry based on the half-plane as the primitive notion”

Axiom T D and the Simmons sublocale theorem

Jorge Picado, Aleš Pultr (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

More precisely, we are analyzing some of H. Simmons, S. B. Niefield and K. I. Rosenthal results concerning sublocales induced by subspaces. H. Simmons was concerned with the question when the coframe of sublocales is Boolean; he recognized the role of the axiom T D for the relation of certain degrees of scatteredness but did not emphasize its role in the relation between sublocales and subspaces. S. B. Niefield and K. I. Rosenthal just mention this axiom in a remark about Simmons’ result....

Linear extenders and the Axiom of Choice

Marianne Morillon (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In set theory without the Axiom of Choice ZF, we prove that for every commutative field 𝕂 , the following statement 𝐃 𝕂 : “On every non null 𝕂 -vector space, there exists a non null linear form” implies the existence of a “ 𝕂 -linear extender” on every vector subspace of a 𝕂 -vector space. This solves a question raised in Morillon M., Linear forms and axioms of choice, Comment. Math. Univ. Carolin. 50 (2009), no. 3, 421-431. In the second part of the paper, we generalize our results in the case...

Propositional extensions of L ω 1 ω

Richard Gostanian, Karel Hrbacek

Similarity:

CONTENTS0. Preliminaries....................................................................... 71. Adding propositional connectives to L ω 1 ω ............... 82. The propositional part of L ω 1 ω (S)............................. 103. The operation S and the Boolean algebra B S ............... 114. General model-theoretic properties of L ω 1 ω (S)...... 175. Hanf number computations...................................................... 226. Negative results for L ω 1 ω (S)...........................................

On the differential geometry of some classes of infinite dimensional manifolds

Maysam Maysami Sadr, Danial Bouzarjomehri Amnieh (2024)

Archivum Mathematicum

Similarity:

Albeverio, Kondratiev, and Röckner have introduced a type of differential geometry, which we call lifted geometry, for the configuration space Γ X of any manifold X . The name comes from the fact that various elements of the geometry of Γ X are constructed via lifting of the corresponding elements of the geometry of X . In this note, we construct a general algebraic framework for lifted geometry which can be applied to various “infinite dimensional spaces” associated to X . In order to define...

On the Compactness and Countable Compactness of 2 in ZF

Kyriakos Keremedis, Evangelos Felouzis, Eleftherios Tachtsis (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

In the framework of ZF (Zermelo-Fraenkel set theory without the Axiom of Choice) we provide topological and Boolean-algebraic characterizations of the statements " 2 is countably compact" and " 2 is compact"

How many clouds cover the plane?

James H. Schmerl (2003)

Fundamenta Mathematicae

Similarity:

The plane can be covered by n + 2 clouds iff 2 .

Essentially Incomparable Banach Spaces of Continuous Functions

Rogério Augusto dos Santos Fajardo (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We construct, under Axiom ♢, a family ( C ( K ξ ) ) ξ < 2 ( 2 ω ) of indecomposable Banach spaces with few operators such that every operator from C ( K ξ ) into C ( K η ) is weakly compact, for all ξ ≠ η. In particular, these spaces are pairwise essentially incomparable. Assuming no additional set-theoretic axiom, we obtain this result with size 2 ω instead of 2 ( 2 ω ) .

On certain non-constructive properties of infinite-dimensional vector spaces

Eleftherios Tachtsis (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In set theory without the axiom of choice ( AC ), we study certain non-constructive properties of infinite-dimensional vector spaces. Among several results, we establish the following: (i) None of the principles AC LO (AC for linearly ordered families of nonempty sets)—and hence AC WO (AC for well-ordered families of nonempty sets)— DC ( < κ ) (where κ is an uncountable regular cardinal), and “for every infinite set X , there is a bijection f : X { 0 , 1 } × X ”, implies the statement “there exists a field F such that...

On the Set-Theoretic Strength of Countable Compactness of the Tychonoff Product 2

Eleftherios Tachtsis (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We work in ZF set theory (i.e., Zermelo-Fraenkel set theory minus the Axiom of Choice AC) and show the following: 1. The Axiom of Choice for well-ordered families of non-empty sets ( A C W O ) does not imply “the Tychonoff product 2 , where 2 is the discrete space 0,1, is countably compact” in ZF. This answers in the negative the following question from Keremedis, Felouzis, and Tachtsis [Bull. Polish Acad. Sci. Math. 55 (2007)]: Does the Countable Axiom of Choice for families of non-empty sets...

On the solvability of systems of linear equations over the ring of integers

Horst Herrlich, Eleftherios Tachtsis (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We investigate the question whether a system ( E i ) i I of homogeneous linear equations over is non-trivially solvable in provided that each subsystem ( E j ) j J with | J | c is non-trivially solvable in where c is a fixed cardinal number such that c < | I | . Among other results, we establish the following. (a) The answer is ‘No’ in the finite case (i.e., I being finite). (b) The answer is ‘No’ in the denumerable case (i.e., | I | = 0 and c a natural number). (c) The answer in case that I is uncountable and c 0 is ‘No...