Mapping hierarchy for dendrites

J. J. Charatonik; W. J. Charatonik; J. R. Prajs

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1994

Abstract

top
AbstractLet a family S of spaces and a class F of mappings between members of S be given. For two spaces X and Y in S we define Y F X if there exists a surjection f ∈ F of X onto Y. We investigate the quasi-order F in the family of dendrites, where F is one of the following classes of mappings: retractions, monotone, open, confluent or weakly confluent mappings. In particular, we investigate minimal and maximal elements, chains and antichains in the quasi-order F , and characterize spaces which can be mapped onto some universal dendrites under mappings belonging to the considered classes.CONTENTS1. Introduction..................................................................52. Preliminaries................................................................63. Hierarchy of spaces.....................................................74. Dendrites.....................................................................95. Monotone and confluent mappings............................136. Open mappings ........................................................227. Problems ...................................................................51References....................................................................51

How to cite

top

J. J. Charatonik, W. J. Charatonik, and J. R. Prajs. Mapping hierarchy for dendrites. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1994. <http://eudml.org/doc/268525>.

@book{J1994,
abstract = {AbstractLet a family S of spaces and a class F of mappings between members of S be given. For two spaces X and Y in S we define $Y ≤_F X$ if there exists a surjection f ∈ F of X onto Y. We investigate the quasi-order $≤_F$ in the family of dendrites, where F is one of the following classes of mappings: retractions, monotone, open, confluent or weakly confluent mappings. In particular, we investigate minimal and maximal elements, chains and antichains in the quasi-order $≤_\{F\}$, and characterize spaces which can be mapped onto some universal dendrites under mappings belonging to the considered classes.CONTENTS1. Introduction..................................................................52. Preliminaries................................................................63. Hierarchy of spaces.....................................................74. Dendrites.....................................................................95. Monotone and confluent mappings............................136. Open mappings ........................................................227. Problems ...................................................................51References....................................................................51},
author = {J. J. Charatonik, W. J. Charatonik, J. R. Prajs},
keywords = {continuum; confluent; dendrite; monotone mapping; open mapping; light mapping; confluent mapping; -mapping},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Mapping hierarchy for dendrites},
url = {http://eudml.org/doc/268525},
year = {1994},
}

TY - BOOK
AU - J. J. Charatonik
AU - W. J. Charatonik
AU - J. R. Prajs
TI - Mapping hierarchy for dendrites
PY - 1994
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - AbstractLet a family S of spaces and a class F of mappings between members of S be given. For two spaces X and Y in S we define $Y ≤_F X$ if there exists a surjection f ∈ F of X onto Y. We investigate the quasi-order $≤_F$ in the family of dendrites, where F is one of the following classes of mappings: retractions, monotone, open, confluent or weakly confluent mappings. In particular, we investigate minimal and maximal elements, chains and antichains in the quasi-order $≤_{F}$, and characterize spaces which can be mapped onto some universal dendrites under mappings belonging to the considered classes.CONTENTS1. Introduction..................................................................52. Preliminaries................................................................63. Hierarchy of spaces.....................................................74. Dendrites.....................................................................95. Monotone and confluent mappings............................136. Open mappings ........................................................227. Problems ...................................................................51References....................................................................51
LA - eng
KW - continuum; confluent; dendrite; monotone mapping; open mapping; light mapping; confluent mapping; -mapping
UR - http://eudml.org/doc/268525
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.