top
CONTENTSIntroduction..........................................................................................................................................................................5§1. Categories with involution, ordered categories and ordered categories with involution.................................................8§2. Types of morphisms regularity in an OI-category. Functional and difunctional morphisms...........................................17§3. Equivalences and coequivalences. Congruences and cocongruences........................................................................25§4. Modular categories and correspondence categories...................................................................................................31§5. A construction of correspondence categories. Admissible and exact functors.............................................................40§6. Correspondences over sites........................................................................................................................................52§7. Modular categories with images...................................................................................................................................58§8. Correspondence categories over categories of classes R₁-R₃....................................................................................62§9. Correspondence categories over exact categories......................................................................................................69§10. OI-categories with a quasinull object..........................................................................................................................75§11. Correspondence categories over exact categories with a null object, over additive and abelian categories..............83§12. Quaternar categories.................................................................................................................................................88§13. Construction of quaternar categories.........................................................................................................................93§14. Supplementary notes and questions........................................................................................................................105References.......................................................................................................................................................................110
M. S. Calenko, V. B. Gisin, and D. A. Raikov. Ordered categories with involution. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1984. <http://eudml.org/doc/268528>.
@book{M1984, abstract = {CONTENTSIntroduction..........................................................................................................................................................................5§1. Categories with involution, ordered categories and ordered categories with involution.................................................8§2. Types of morphisms regularity in an OI-category. Functional and difunctional morphisms...........................................17§3. Equivalences and coequivalences. Congruences and cocongruences........................................................................25§4. Modular categories and correspondence categories...................................................................................................31§5. A construction of correspondence categories. Admissible and exact functors.............................................................40§6. Correspondences over sites........................................................................................................................................52§7. Modular categories with images...................................................................................................................................58§8. Correspondence categories over categories of classes R₁-R₃....................................................................................62§9. Correspondence categories over exact categories......................................................................................................69§10. OI-categories with a quasinull object..........................................................................................................................75§11. Correspondence categories over exact categories with a null object, over additive and abelian categories..............83§12. Quaternar categories.................................................................................................................................................88§13. Construction of quaternar categories.........................................................................................................................93§14. Supplementary notes and questions........................................................................................................................105References.......................................................................................................................................................................110}, author = {M. S. Calenko, V. B. Gisin, D. A. Raikov}, keywords = {ordered categories with involution; correspondence categories; bibliography}, language = {eng}, location = {Warszawa}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, title = {Ordered categories with involution}, url = {http://eudml.org/doc/268528}, year = {1984}, }
TY - BOOK AU - M. S. Calenko AU - V. B. Gisin AU - D. A. Raikov TI - Ordered categories with involution PY - 1984 CY - Warszawa PB - Instytut Matematyczny Polskiej Akademi Nauk AB - CONTENTSIntroduction..........................................................................................................................................................................5§1. Categories with involution, ordered categories and ordered categories with involution.................................................8§2. Types of morphisms regularity in an OI-category. Functional and difunctional morphisms...........................................17§3. Equivalences and coequivalences. Congruences and cocongruences........................................................................25§4. Modular categories and correspondence categories...................................................................................................31§5. A construction of correspondence categories. Admissible and exact functors.............................................................40§6. Correspondences over sites........................................................................................................................................52§7. Modular categories with images...................................................................................................................................58§8. Correspondence categories over categories of classes R₁-R₃....................................................................................62§9. Correspondence categories over exact categories......................................................................................................69§10. OI-categories with a quasinull object..........................................................................................................................75§11. Correspondence categories over exact categories with a null object, over additive and abelian categories..............83§12. Quaternar categories.................................................................................................................................................88§13. Construction of quaternar categories.........................................................................................................................93§14. Supplementary notes and questions........................................................................................................................105References.......................................................................................................................................................................110 LA - eng KW - ordered categories with involution; correspondence categories; bibliography UR - http://eudml.org/doc/268528 ER -