Ordered categories with involution

M. S. Calenko; V. B. Gisin; D. A. Raikov

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1984

Abstract

top
CONTENTSIntroduction..........................................................................................................................................................................5§1. Categories with involution, ordered categories and ordered categories with involution.................................................8§2. Types of morphisms regularity in an OI-category. Functional and difunctional morphisms...........................................17§3. Equivalences and coequivalences. Congruences and cocongruences........................................................................25§4. Modular categories and correspondence categories...................................................................................................31§5. A construction of correspondence categories. Admissible and exact functors.............................................................40§6. Correspondences over sites........................................................................................................................................52§7. Modular categories with images...................................................................................................................................58§8. Correspondence categories over categories of classes R₁-R₃....................................................................................62§9. Correspondence categories over exact categories......................................................................................................69§10. OI-categories with a quasinull object..........................................................................................................................75§11. Correspondence categories over exact categories with a null object, over additive and abelian categories..............83§12. Quaternar categories.................................................................................................................................................88§13. Construction of quaternar categories.........................................................................................................................93§14. Supplementary notes and questions........................................................................................................................105References.......................................................................................................................................................................110

How to cite

top

M. S. Calenko, V. B. Gisin, and D. A. Raikov. Ordered categories with involution. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1984. <http://eudml.org/doc/268528>.

@book{M1984,
abstract = {CONTENTSIntroduction..........................................................................................................................................................................5§1. Categories with involution, ordered categories and ordered categories with involution.................................................8§2. Types of morphisms regularity in an OI-category. Functional and difunctional morphisms...........................................17§3. Equivalences and coequivalences. Congruences and cocongruences........................................................................25§4. Modular categories and correspondence categories...................................................................................................31§5. A construction of correspondence categories. Admissible and exact functors.............................................................40§6. Correspondences over sites........................................................................................................................................52§7. Modular categories with images...................................................................................................................................58§8. Correspondence categories over categories of classes R₁-R₃....................................................................................62§9. Correspondence categories over exact categories......................................................................................................69§10. OI-categories with a quasinull object..........................................................................................................................75§11. Correspondence categories over exact categories with a null object, over additive and abelian categories..............83§12. Quaternar categories.................................................................................................................................................88§13. Construction of quaternar categories.........................................................................................................................93§14. Supplementary notes and questions........................................................................................................................105References.......................................................................................................................................................................110},
author = {M. S. Calenko, V. B. Gisin, D. A. Raikov},
keywords = {ordered categories with involution; correspondence categories; bibliography},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Ordered categories with involution},
url = {http://eudml.org/doc/268528},
year = {1984},
}

TY - BOOK
AU - M. S. Calenko
AU - V. B. Gisin
AU - D. A. Raikov
TI - Ordered categories with involution
PY - 1984
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction..........................................................................................................................................................................5§1. Categories with involution, ordered categories and ordered categories with involution.................................................8§2. Types of morphisms regularity in an OI-category. Functional and difunctional morphisms...........................................17§3. Equivalences and coequivalences. Congruences and cocongruences........................................................................25§4. Modular categories and correspondence categories...................................................................................................31§5. A construction of correspondence categories. Admissible and exact functors.............................................................40§6. Correspondences over sites........................................................................................................................................52§7. Modular categories with images...................................................................................................................................58§8. Correspondence categories over categories of classes R₁-R₃....................................................................................62§9. Correspondence categories over exact categories......................................................................................................69§10. OI-categories with a quasinull object..........................................................................................................................75§11. Correspondence categories over exact categories with a null object, over additive and abelian categories..............83§12. Quaternar categories.................................................................................................................................................88§13. Construction of quaternar categories.........................................................................................................................93§14. Supplementary notes and questions........................................................................................................................105References.......................................................................................................................................................................110
LA - eng
KW - ordered categories with involution; correspondence categories; bibliography
UR - http://eudml.org/doc/268528
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.