Fourier approximation and embeddings of Sobolev spaces
D. E. Edmunds; V. B. Moscatelli
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1977
Access Full Book
topAbstract
topHow to cite
topD. E. Edmunds, and V. B. Moscatelli. Fourier approximation and embeddings of Sobolev spaces. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1977. <http://eudml.org/doc/268534>.
@book{D1977,
abstract = {CONTENTSIntroduction............................................................................................................ 51. Preliminaries............................................................................................................. 82. Embedding into $W^\{m,p\}(Ω)$ into $L^S(Ω)$ (n>1).......................................... 103. The case n = 1.......................................................................................................... 284. Embedding $W^\{m,p\}(Ω)$ into $L^φ(Ω)$............................................................ 295. Embedding $W^\{m,p\}_0(Ω)$ into $L^S(Ω)$ and $L^φ(Ω)$............................. 356. Applications to the type of the embedding.......................................................... 357. Unfortunate technicalities....................................................................................... 37References.................................................................................................................... 46},
author = {D. E. Edmunds, V. B. Moscatelli},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Fourier approximation and embeddings of Sobolev spaces},
url = {http://eudml.org/doc/268534},
year = {1977},
}
TY - BOOK
AU - D. E. Edmunds
AU - V. B. Moscatelli
TI - Fourier approximation and embeddings of Sobolev spaces
PY - 1977
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction............................................................................................................ 51. Preliminaries............................................................................................................. 82. Embedding into $W^{m,p}(Ω)$ into $L^S(Ω)$ (n>1).......................................... 103. The case n = 1.......................................................................................................... 284. Embedding $W^{m,p}(Ω)$ into $L^φ(Ω)$............................................................ 295. Embedding $W^{m,p}_0(Ω)$ into $L^S(Ω)$ and $L^φ(Ω)$............................. 356. Applications to the type of the embedding.......................................................... 357. Unfortunate technicalities....................................................................................... 37References.................................................................................................................... 46
LA - eng
UR - http://eudml.org/doc/268534
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.